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Even if a scientific model, like a car, has only a few years to run before it is

discarded, it serves its purpose for getting from one place to another.

- David L. Wingate



Abstract

The current design of concert and festival entrances shows a great variety, the occur-

rence of bottlenecks being inevitable. Recent experimental research shows that safety

considerations for such scenarios are necessary as factors like corridor width, number

of people and motivation of the latter have an impact on the occurrence of queuing

and crowding and the resulting density in front of the bottleneck. As the behaviour

of such systems with respect to the above-mentioned factors is unclear, velocity-based

microscopic modelling and simulation is used as a means of abstraction to understand

the underlying mechanisms to a greater extent.

The results show that queuing and crowding phenomena can be reproduced in

different corridor widths, the essential influence on density increase being the geometric

boundary condition, which changes the desired directions of agents. This raises interac-

tion and negotiation issues and makes phenomena such as overtaking, space filling and

blocking occur with increasing corridor width. By changing the contraction time scale of

the crowd in the simulation, the dissolving of ordered structures is observed leading to

a further overall density increase. This is much more pronounced in a narrow corridor,

which still results in lower densities due to a boundary effect around walls. Finally,

runaway values observed in the experiment can be explained by means of simulation

results.

Thus, velocity-based modelling and simulation make these specific bottleneck setups

found in the real world more comprehensible and pave the way for future extensions to

the original model to further investigate the complexity of such scenarios.
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Chapter 1

Introduction

1.1 Background

Mass events like concerts or festivals assemble specific geometric designs with the use of

barriers to split and regulate incoming pedestrian flows. At some point, these entrance

scenarios result in a bottleneck making safety aspects matter. Understanding the

interaction between infrastructure and people is therefore a crucial aspect in order to

design a safe entrance system.

In this context, several types of real-world entrance setups were already tested and

observed in experiments [3, 2]. Experimental data for bottlenecks shows that a specific

entrance system can lower the occurrence of pushing among people forced to wait.

Furthermore, factors like corridor width, number of participants and motivation have an

impact on whether queuing or crowding behaviour and an accompanying high density

in front of the bottleneck occurs. In general, this density increase is accomplished

by broadening the corridor and by raising the motivation of the participants, but the

population size also appears to affect the pushing occurrence and density reached. [3]

1.2 Problem statement

The reasons for the above-mentioned behaviour of these systems are however unknown,

which makes it hard to derive meaningful correlations. Mainly, the established width-

density relations through numerous experimental runs are of great interest.

Having this in mind, the goal of this thesis focuses on studying this real-world

system by means of abstraction in order to get a basic grasp on the experimental

data and possibly identify key influence factors. This is realised by conducting static

pre-analyses and making use of agent-based modelling and simulation. For this, an

1



1.3. OUTLINE OF THIS THESIS

appropriate modelling environment in the form of a simple operational model as well

as suitable model parameters need to be set up to reproduce the pedestrian dynamics

found in the experiments with focus on phenomena like queuing and crowding as well

as width-density correlations. This includes finding approaches for setting up initial

conditions, identifying model parameters like an agent’s motivation and the definition

of different types of agents regarding their behaviour. Furthermore, the subsequent

variations of corridor width, number of agents and motivational states in the form

of various simulation runs need to be handled. On the other hand, evaluation of the

ability of the used model to reproduce the observed pedestrian dynamics in the first

place are possibly necessary, which leads to detecting future implementations for the

original model. Ultimately, the analyses made in this thesis should shed light on the

experimental data gathered and somewhat elucidate real-world pedestrian dynamics in

front of bottlenecks.

1.3 Outline of this thesis

To give a general overview, Chapter 2 begins by a short literature review of the 21st

century concerning research of crowd behaviour in front of bottlenecks. The state of

the art section goes on with defining specific measurement methods for flow and density

of pedestrian dynamics and tries to clarify what is currently understood by queuing

and crowding. In a further step, the aspect of pushing is broken down. These general

explanations are then followed by two experimental setups to introduce the particular

research. The experimental data gathered from one of these setups will be used for

comparison with the simulation results, the main part of this thesis. Therefore, the

state of the art section includes motivating aspects for modelling and simulation as well.

Moreover, possible modelling approaches are discussed shortly and reasons given for

making use of a velocity-based model. The governing equations of the used collision-free

speed model are given and the JuPedSim framework, to which this model belongs,

introduced.

Chapter 3 concentrates on preliminary work such as filtering and fitting the experi-

mental data set to exclude parameters that were not controlled during the experiment.

The section also includes the setting up of different geometries and studying the effect

of these geometries on maximum densities and maximum neighbours by defining two

different configurations of circle arrangement. As for the simulation scenarios, initial

conditions like initial agent distribution and accompanying densities as well as model

parameters setting are discussed. Specifically the use of calibration parameters and

2



CHAPTER 1. INTRODUCTION

agent parameters to reproduce motivation and the definition of two types of agents

is addressed. Further configuration steps of simulation input files, generation of the

necessary file structure and the general automated work flow for simulation complete

this chapter.

Chapter 4 starts with the results presentation for the corridor width variation by

means of Voronoi diagrams, time-density series, width-density relations in a specific

time interval, trajectory analysis, comparison between individual distance to target

and time to target and further self-implemented analyses. This is followed by the

results of the number of agents variation and a specific test scenario to demonstrate

an unexpected model behaviour. Finally, results for the variation of motivation are

presented. The section terminates by a thorough discussion of all results, sets these

into an overall scientific context and addresses possible and necessary model extensions.

The last Chapter 5 gives a summary of the results obtained to draw conclusions

and a short outlook.
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Chapter 2

State of the art

2.1 Pedestrian research in front of bottlenecks

The Encyclopedia of Complexity and Systems Science [5] defines a bottleneck as ”a part

of facility limiting pedestrian flows. This can be, for example, a door, a narrowing in a

corridor, or stairs, i.e., locations of reduced capacity. At bottlenecks jamming occurs

if the inflow is higher than the capacity, which is the maximal flow rate supported

by a facility.” The physical quantities like flow rate and density are defined in the

measurement methods section.

During the last two decades diverse research regarding pedestrian dynamics in front

of bottlenecks was done, mainly concerning pedestrian behaviour and the emergent

flow. In 2001, Helbing [7, 8] reports self-organization phenomena of pedestrians at

bottlenecks by observing oscillations in the passing direction in bi-directional flows.

Nagatani [9, 10] points out the dynamical transition and scaling behaviour of pedestrian

flows at a bottleneck.

In 2005, Hoogendoorn and Daamen [11, 12] report that pedestrians inside bottlenecks

form layers, the number of layers augmenting with the width, however that ”the life

span of these layers is rather small” [11] in wide bottlenecks. Furthermore, several

walking patterns in narrow corridors are identified, which indicate lane behaviour. They

also discuss that aside from the width and wall surface of a bottleneck, the interaction

behaviour of the pedestrians passing the bottleneck is important and use the zipper

effect to explain the stepwise increase of the capacity of a bottleneck. [11, 12]

In 2006, Kretz [13] shows that the specific flux declines linearly with increasing

width of the bottleneck with the condition of only one person passing at a specific

time, otherwise the flux is constant for larger bottleneck widths. In 2009, Seyfried [1]

reports a linear growth of pedestrian flow with the bottleneck width, which results in
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Figure 2.1: Zipper effect with increasing width and thus distance between lanes
augmenting [1]

the capacity estimation for bottlenecks being revised. The density increase in front of

the bottleneck is explained with the zipper effect in combination with boundary effects,

which is shown in figure 2.1. It is elaborated that as the space at boundaries cannot

be used as efficiently as in the center of the bottleneck, the density will increase for

greater widths [1].

In the following years, these density-specific investigations together with jam analysis

in front of bottlenecks came to the fore as these considerations are likewise necessary in

order to design a safe infrastructure. Before going into more particular experimental

studies, a short overview of flow and density measurement is given.

2.2 Measurement methods

The flow rate in a time interval T [14] is defined by:

J =
∆N

T
(2.1)

where ∆N is the difference in agents passed. Other possibilities to measure the flow are

the inverse mean of time gaps between two consecutive pedestrians or the hydrodynamic

relation [14] in the form of:

J = ρ · v · w (2.2)

where w is the width for which the flow rate is determined, v and ρ the average speed

and density of a pedestrian stream. The occurrence of jamming will ultimately result in

a density increase. The density measurement in front of a bottleneck can be measured

in several ways from which one is the arithmetic mean of all agents N in a defined
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measurement area A:

ρ =
N

A
(2.3)

A second approach is to calculate individual Voronoi cells [15]. These are constructed

with respect to their origin, which are people or agents in our case. A Voronoi cell

contains all points in space nearer to its origin than any other origin. This results in an

area of points, the individual area that is available to a person or agent. From this area

Aind, the individual Voronoi density ρind can be calculated by:

ρind =
1

Aind

(2.4)

If the Voronoi density has to be calculated in a specific measurement area Ama containing

several Voronoi cells, the individual Voronoi densities have to be integrated with respect

to the geometric boundaries as well as averaged:

ρma =

∫∫

ρind dx dy

Ama

(2.5)

Figure 2.2 shows an exemplary Voronoi diagram with several cells. Advantages of the

Voronoi density are high resolution and lower standard deviations in comparison to

other density measurement methods [16].

Figure 2.2: Exemplary Voronoi diagram. Light blue circles are pedestrians, dark blue
lines indicate the Voronoi cells, which are infinite in the case of a dashed line as this
representation is only a cutout
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2.3 Differencing queuing, crowding and pushing

The verb queuing derives from the noun queue by which ”a line or sequence of people

awaiting their turn to proceed” [17] is understood. The central element is the aspect

of waiting from which waiting lines result. [17] Lane formation can be the cause of

queuing.

The verb crowding derives from the noun crowd and is a term used in social

psychology to describe this type of mass phenomena [18]. Generally, a large number

of people make up a crowd in which the individuals can be gathered closely together

or even move too close together so that spaces are almost filled completely. This

state leaves little or no room for movement and can be described sociologically by

the subjectively perceived constriction and intrusion into private space due to spatial

limitations. The physical or spatial correlate is the objectively measurable density, the

area available for one person, or the constraint of not being able to move freely. Thus

a ”tightly packed mass” [17] is formed by clustering or congregating, the latter term

interestingly originating from middle English senses like ”moving by pushing” or ”push

one’s way” [17]. The aftermath of crowding includes stress and loss of control. [19, 17]

With regards to pushing, the state of knowledge insists that pushing occurs for a

specific reason. As put clear by Henein [20], ”People in crowds do not push randomly

[...]”, but ”push in a particular direction when they want to move in that direction and

are prevented from doing so.” Helbing observes that the difference between the desired

speed and the speed of the preceding pedestrian is linked to the distance that pedestrians

keep from one another [7] and maintaining personal space in a crowd is a reason too [20].

As people want to move towards certain goals, they will be deflected by pushing, which

are physical forces [21]. However, forces are not instantaneous but location-specific and

combine additively before they can propagate through a crowd just like a shock wave

[20]. Thus, factors that may influence pushing should be investigated. Two essential

experiments with focus on analysing such pedestrian behaviours at entrance scenarios

typically found at concerts and festivals are described in-depth below.

2.4 Experimental studies

2.4.1 Setup I

The general methodology of the experiments depicted in the following is recording

video footage from above the participants using permanently installed GoPro cameras.

Subjects receive coloured caps, which set clearly recognizable accents in the video
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recordings. The footage is processed afterwards in a frame per frame manner with

the software PeTrack, which was specifically developed at Jülich Research Centre. For

supplementary information, a look at [22] should be taken. This software recognizes

and tracks the cap markers and extracts trajectories from the individual positions and

outputs files that can be further processed. For this, the module JPSreport from the

software package JuPedSim can then be used to analyse the data [23, 24].

In 2013, the first set of experiments [2] showed that the spatial structure of barriers

in entrance scenarios influences the density in front of the bottleneck. The aim was to

find out whether and which rules of conduct apply and when these rules are addressed.

The two setups were a semi-circle and a corridor scenario with guiding barriers from the

side in front of two entrances. Both scenarios with participants are shown in Figure 2.3.

In both cases, the participants were distributed loosely so that initial densities are

comparable. Furthermore, the participants were motivated by telling them to be one of

the first to pass through one of the entrances.

(a) corridor setup (b) semi-circle setup

Figure 2.3: Momentary pictures during experimental runs in June 2013 [2]

The results show higher Voronoi densities in front of the entrances in the semi-circle

setup and a star-like pattern, whereas the corridor scenario results in ordered lanes.

The semi-circle setup shows participants clearly filling spaces, moving as closely as

possible and pushing behaviour as well.

However, the geometric constraints of both setups in the experiment in terms of

width are not comparable and the produced motivation could blend the findings as it

was not a controlled parameter. Furthermore, these experiments did not use a constant

measurement area as different rectangular measurement areas, 3 by 1 meters for the

semi-circle and 2.3 by 1 meter to fit the boundaries of the corridor, were used.
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2.4.2 Setup II

In 2018, another set of experiments [3] with varying corridor widths and using a variation

of motivation was designed and its effects on the density in front of the bottleneck

studied. These were realised on multiple days at the University of Wuppertal in January

2018. The runs were varied in such a way that on the one hand the corridor width was

changed among five widths between 1.2 m and 5.6 m and on the other hand participants

were given a low or high motivation to reach the entrance. The low motivation was

generated by telling all participants that the front row had enough space for everyone.

To intensify the motivation, the participants were told that only a restricted number of

standing places for a good view were available. Four specific experimental views from

above are shown in Figure 2.4.

A thorough analysis of the results has been made in [3]. Figure 2.5 shows selected

time-density series from the experiment with a time window of t = 3 s. The curves are

only smoothed to enhance a better distinction. Two main observations can be made:

for identical motivations, the maximum density in front of the bottleneck increases with

the corridor width and for increasing motivation an overall density increase is seen.

Figure 2.5: Time-density series for selected runs, low motivation being blue and high
motivation red, time window t = 3 s

However, other factors like the varying number of participants significantly influences

the occurrence of pushing and the level of density too [3]. The derived width-density

relation, for which a density mean in the interval of 5 s to 10 s was considered, is shown

in the next section as it will be further processed and used to compare the simulations

to.
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(a) 1.2 m width, low motivation (b) 5.6 m width, low motivation

(c) 1.2 m width, high motivation (d) 5.6 m width, high motivation

Figure 2.4: Momentary pictures during experimental runs in January 2018 for narrow
and wide corridor with low and high motivation [3]
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Thus, a guiding system in front of the entrance in the form of a narrow corridor

seems to reduce pushing of the waiting people. A narrow corridor width appears to

favour lane arrangement and force the participants into queues so that the densities

occurring at the entrance are significantly lower. At wider widths, density in front

of the entrance increases and crowding occurs. The transition between these two

arrangements is observed between a corridor width of 1.2 m and 2.3 m. This however

changes when intensifying the participants’ motivation as pushing behaviour occurs

and higher densities are reached. [3]

Furthermore, the experiment was able to identify two types of people. This is shown

in figure 2.6 for a corridor width of 5.6 m and high motivation. Basically, participants

opted for (or were forced to) either staying and waiting or moving fast and filling

spaces. When a contracted stage is reached, pushing takes place. Figure 2.6 gathers

the spatio-temporal dimensions of pushing as a thick branch.

Figure 2.6: Two types of participants in the form of waiting and filling behaviour

2.5 Agent-based modelling

2.5.1 General motive for modelling

Studying any real system to better understand it involves coming up with a suitable

model for this system. The overall process is shown in figure 2.7. Based on the

experimental observations, a systematic model approach thus has to be found. This

includes the mathematical description of the system by setting up required equations
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and relevant parameters. Meanwhile, lots of model classes exist to map a real system for

a particular purpose and most of the time mixed forms occur. After the model has been

set up, its behaviour can then specifically be influenced and analysed by simulation.

The data from observed and modelled behaviour can then be compared for further

analysis. This can finally lead to future changes and improvements of the model in the

form of a design cycle. It should however be clear that the model is always a rough

approximation with the goal of modelling desired behaviour, so that the original system

and the model can never be compared directly. [25, 4]

Figure 2.7: Process and use of modelling, derived from [4]

Nevertheless, models need to be accurate. The experimental results show that under

different motivational conditions, pushing behaviour occurs. In this context, Henein

and Shiwakoti [21, 20] insist on the fact that ”force effects can cause them (people)

to be pushed away from their desired trajectories and accurate models must reflect

this. Also, the presence of crowd members injured by excessive force can significantly

affect the ability of others to move freely. Models that do not represent pushing forces

therefore cannot directly account for all these additional causes of delay.” Furthermore,

”it is essential to note [...] when modelling force [...] that force applied by individuals

in one part of a modelled crowd must propagate through that crowd with certain

time characteristics”. In 2012, Ezaki [26] for instance used inflow and competitiveness

parameters to simulate congested situations at bottlenecks.

2.5.2 Approaches for pedestrian dynamics

This thesis will focus on microscopic modelling, which represents pedestrians as stand-

alone individuals that interact locally. This modelling approach is able to produce

complex self-organisation phenomena with powerful pedestrian dynamics by implement-
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ing simple models. However, thorough simulation analysis is necessary in order to fully

grasp the relations between the emergence of these phenomena and the constructed

model parameters. [5, 6]

Microscopic models can be further classified as continuous or discrete with regard

to time and space as well as other state variables as is shown in figure 2.8. Further

subcategories are related to a stochastic or deterministic character of the model and

to what extent the operational model describes the movement of the agents in the

simulation. On the one hand, force-based models use Newtonian dynamics by describing

particles with inertia. One well-known representative is the social force model by

Helbing [27], which uses three force terms to describe the acceleration towards the

desired velocity, desired distance from other pedestrians and borders as well as attractive

effects. Besides force-based models, there is the category of velocity-based models.

[5, 28]

Figure 2.8: Possible classification for microscopic models [5]

In these models, agents visually consider their neighbourhood and use techniques

to avoid collisions. The velocity is modelled via first-order differential equations and

adjusted instantaneously without any reaction time. The velocity can be impeded to

exclude particle collision and overlapping, which makes them reliable in modelling high

densities. Moreover, less parameters and calibration of the latter are needed, making

these models simpler to understand. Last but not least, a significant reduction of the

computational effort is accomplished when comparing to force-based models. Therefore,

a very minimal operational model in the form of a collision-free speed model is used

to simulate the motion of agents in this thesis and compare them to the experimental

data. [5, 6]
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2.5.3 Velocity-based modelling

In this section, the governing equations of the used model are shown [6]. The velocity

in this model is given by a scalar speed and a normalized direction:

ẋi = V (si(xi, xj, . . . )) × ei(xi, xj, . . . ) (2.6)

in which the first term represents the optimal speed function and ei the moving direction.

Both the speed and the direction of an agent depend on the relative positions of their

neighbours.

ei is the direction model and is given by a simplified version of the additive form of

the gradient navigation model, where a repulsion function is used depending on the

distances si,j with neighbours:

ei(xi, xj, . . . ) =
1

N
(e0 +

∑

j

(R(si,j) · ei,j) (2.7)

with e0 the desired direction, N a normalization constant in order to obtain a unit

vector and R(si,j) the repulsion function given by:

R(si,j) = a · exp
(−si,j

D

)

(2.8)

where si,j is the spacing distance between pedestrians i and j, a the repulsion rate and

D the repulsion distance (e.g. range). The minimal spacing si is then calculated among

the set Ji of pedestrians with a size of diameter l in front of a given pedestrian i by:

J = {j, ei · ei,j ≤ 0 and |ei
⊥ · ei,j| ≤ l/si,j} (2.9)

For a better understanding, this set is represented in figure 2.9.

Figure 2.9: Set of pedestrians for calculating minimal spacing in front [6]
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The minimum distance in front is then given by:

si = minj∈Ji
si,j (2.10)

As the optimal speed function is given by the piecewise linear function:

V (si) = min{v0, max{0, (si − l)/T}} (2.11)

the speed depends on the desired speed v0, the minimal spacing in front si, the pedestrian

diameter l and the time gap T.

This operational model is part of JPScore, one module of the software package

JuPedSim [23] developed at Jülich Research Centre. The JuPedSim framework is focused

on academic use and implements sub-models for researching particular pedestrian

dynamics. The program code itself is mainly written in C++. JPScore has no

graphical user interface and can only be executed in shell-mode, thus all input and

output files are .xml or .txt based.

JPScore computes the trajectories based on an initial configuration file and using

a geometry file. The latter can be set up and edited using a provided editor. The

initial configuration file needs several specifications, from which one is the operational

model to describe the pedestrians movement in space. On the tactical level, several

route choice models exist, depending on whether a navigation graph based on graph

theory and made up of nodes and edges or a generated floorfield is used. Route choice

patterns like shortest and global shortest path as well as quickest path are possible. On

a strategic level, a direction strategy is specified, which defines the desired direction

of a pedestrian and is router dependent. Furthermore, the initial configuration file

takes general frame conditions like maximum simulation time and a seed. Basically,

different seeds engender different initial conditions like spatial agent distribution and

characteristics with the purpose of randomisation. More details can be found online at

http://www.jupedsim.org.

The module JPSvis can be used for visualizing the outputted trajectory files and

JPSreport for different analyses of the computed trajectories. This thesis uses a build

of JPScore version 0.8.4 and JPSreport version 0.8.3.
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Chapter 3

Preliminary work and methodology

3.1 Filtering and fitting data set

As shown for the setup II experiment, density in front of the bottleneck generally

increases by widening the corridor and by intensifying the motivation of the participants,

but the number of participants seems to influence the level of density as well. If the

number of participants is low, low densities are measured even when the motivation is

high. On the other hand, high densities are measured with a high number of participants,

but a low motivation. Figure 3.1 shows the experimental data for all runs.

In order to account for this significant impact of the number of participants N and

ensure comparability when putting experimental and simulation results side by side, a

selection of the experimental data is made. This should at least filter possible effects

due to the size of the population. Therefore, all runs not fulfilling N ∈ [30, 70] are

discarded, by which rather low (< 30 participants) and high populations sizes (> 70

pedestrians) are eliminated. These thresholds can of course be selected differently. In

this case, the 8 runs 030, 040, 070, 080, 170, 180, 190 and 200 [3] are eliminated. The

mean and median of the remaining data are:

N̄ = 52.16

Ñ = 49.5

It is noticed that there is a general increase in the density, but that the density

asymptotes towards a maximum. A standard model for this sort of asymptotic function

or a saturation curve is an exponential. In order to better describe the data and possibly

track down differences, negative exponential growth functions of the form:
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Figure 3.1: calculated mean density (t ∈ [5 − 10]s) data differentiated by number of
participants and motivation (h- = low, h0 = high)

f(x) = a · (1 − e−b·x) (3.1)

have been fitted with the least squares method to the experimental data represented in

figure 3.2, with parameter a representing the maximum density reached and parameter

b the steepness and thus a sort of ”duration” to reach it. The correlation index for

both variables is calculated and given in table 3.1.

motivation a b correlation index
low 4.73 0.57 -0.881
high 8.06 1.11 -0.633

Table 3.1: Exponential functions describing the low and high motivation curves with
their respective correlation index

It can be seen that the correlation index for both variables in the low motivation

curve is negative and rather high, which means that the maximum density takes longer

to reach. For high motivation, the correlation between both variables is negative as well

but lower, which indicates that the maximum density is achieved earlier. The fit for

the high motivation data shows indeed that the maximum density is reached quickly.

However, to clarify, these curves were only fitted to deduce possible differences
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within the data sets of low and high motivation. The curves can of course be of

another form, especially the high motivation curve may not be exponential, but rather

a constant function with a kink at the beginning. The low motivation curve could

also be a linear function. However, the used fits give the insight of maximum density

being reached faster with high motivation, whereas it is reached gradually for a low

motivation. Furthermore, the process of filtering and fitting shows the influence of

corridor width, number of participants and motivation in a more explicit way.

Figure 3.2: Resulting exponential curves from fitting selected experimental data,
mathematical expressions of functions are given in the legend

3.2 Analysis of geometric boundary conditions

A general density increase is seen irrelevant of the motivation and number of participants,

which puts forward the impact of corridor width. Therefore, the following passages

account for physical boundary effects due to specific circle radius r and corridor width

w interaction, which could possibly discretize the maximum density in front of the

bottleneck. This is done via analysis of maximum packing densities of identical circles

with the assumption of pedestrians being circles, when in reality a better description

can be made with ellipses.

In order to analyse different corridor widths, one main symmetric geometry is build.
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This geometry can be adapted to give a certain corridor width and is shown in figure 3.3

Figure 3.3: Dummy geometry for all scenarios in this thesis, the blue square is used
for density measurement, the red dashed line for flow measurement

The coordinate in x-direction is adapted to get the specific corridor width by planting

the values from table 3.2. The exit has a width of 0.5 m. An exemplary geometry inifile

is given in the appendix A.

Table 3.2: x-values for producing specific geometries

width w 1.2 m 2.3 m 3.4 m 4.5 m 5.6 m
x coordinate 0.60 m 1.15 m 1.70 m 2.25 m 2.80 m

In order to analyse maximum packing densities, two different possible configurations

in the form of square packing and hexagonal packing are defined. For the configuration

definition, adapted calculations from Prof. Dr. Bernhard Steffen (TU Dortmund) are

used.

For both configurations, the arrangement in y-direction is periodically as there is no

limitation by walls. The y-coordinates of the circles of the i-th row are given by:
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yi = i · r + (i − 1) · h (3.2)

where h is the height between the highest point of the first row and the center of the

second row and specific to the configuration. As for the arrangement in x-direction, the

width w is the constraint. In a square packing, all rows contain N circles, whereas in a

hexagonal packing, uneven rows contain N and even rows N-1 circles. Generally, the

maximum number of circles N that is possible in a row is given by:

N = int
(

w

2r

)

(3.3)

The calculation for the x-coordinates and h is done configuration-wise in the following.

As for configuration 1, all rows contain N circles. In order to guarantee for a dense

packing, several calculations are necessary for h1 and xi. The free space d1 in a row is

given by:

d1 = w − 2 · r · N (3.4)

Two different cases then need to be looked at. If d1 < r, there is no space in between

the circles as represented in figure 3.4 and h1 is given by:

h1 =
√

4 · r2 − d2
1 − r (3.5)

Figure 3.4: Reference lines and distances for configuration 1 (square) in order to
calculate height h1 if d1 < r
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The x-coordinates for uneven (see 3.6) and even rows (see 3.7) are then given by:

xi = r · (2 · i + 1), i = 0 . . . N − 1 (3.6)

xi = r · (2 · i − 1) + d1, i = 1 . . . N (3.7)

If d1 > r, there is a distance between the circles. This can be expressed as dbetween,

which is graphically shown in figure 3.5. Mathematically, dbetween is given by:

dbetween =
d1 − r

2 · N − 1
(3.8)

and h1 is given by :

h1 =
√

4 · r2 − (r + dbetween)2 − r (3.9)

Figure 3.5: Reference lines and distances for configuration 1 (square) in order to
calculate height h1 if d1 > r

The x-coordinates for uneven (see 3.10) and even rows (see 3.11) are then given by:

xi = r + 2 · i · (r + dbetween), i = 0 . . . N − 1 (3.10)

xi = r + (2 · i − 1) · (r + dbetween), i = 1 . . . N (3.11)

For configuration 2, uneven rows contain N circles and even rows N-1 circles as depicted

in figure 3.6. The distance d2 in x-direction between the circles in an uneven row is

given by:
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d2 =
w − 2 · r · N

N − 1

Thus, the height h2 is given by:

h2 =
√

4 · r2 − (r + d2/2)2 − r (3.12)

Figure 3.6: Reference lines and distances for configuration 2 (hexagonal) in order to
calculate height h2

The x-coordinates for uneven (see 3.13) and even rows (see 3.14) are then given by:

xi,uneven = r + i · (2 · r + d1), i = 0 . . . N − 1 (3.13)

xi,even =
xi,uneven + xi+1,uneven

2
, i = 0 . . . N − 2 (3.14)

Having these configurations at hand, one can easily generate dense packings for any

corridor width and circle radius r. To realise this, the circle coordinates and dimensions

generated by the equations above are written into a file, which can be interpreted by

JPSreport to determine the Voronoi density. An exemplary JPSreport inifile is given

in the appendix A. The Voronoi density is read out in the measurement area for both

configurations at widths 1.2 m to 5.6 m and varying circle diameter r with r = 0.15 m,

0.175 m, 0.20 m, 0.225 m and 0.25 m.

Figure 3.7 shows the resulting Voronoi densities in function of radius r for all widths.

Differences in maximum Voronoi densities can be seen among both configurations, but
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also within every configuration.

(a) Configuration 1 (b) Configuration 2

Figure 3.7: Maximum Voronoi densities of circles for both configurations and all
widths with specific radius r. In general, the maximum Voronoi density increases with
reducing radius r. Both configurations show differences in maximum Voronoi densities
among each other, but also within every configuration for specific widths. A main
observation is that the corridor width of 1.2 m shows lowest maximum Voronoi densities.

For configuration 1, the corridor of width w = 1.2 m shows the lowest densities. A

density increase is always seen for the corridor width w = 2.3 m, depending on the radius

r it is more pronounced. For width w = 3.4 m, the density sometimes increases or is

equal to that of w = 2.3 m except for r = 0.150 m. As for the wider corridors, these show

a different behaviour. They either result in equal maximum densities or are sometimes

rather low and equal to those of corridor width w = 1.2 m. This might indicate that

for a square packing, a density increase is only relevant in narrower corridors.

As for configuration 2, the narrowest corridor shows the lowest densities. Quite

different to configuration 1, the hexagonal configuration most of the time shows a

continuous density increase for a specific radius r over all widths. For both configurations,

the narrowest corridor always results in significantly lower densities showing that some

boundary effect exists. This is further illustrated in figure 3.8, where Voronoi cells look

differently around walls. Especially in a narrow corridor, this boundary effect will have

an effect during the measurement.

To further show this effect and its magnitude, a short demonstration is done by

establishing the density difference between a squarish and a hexagonal Voronoi cell. It
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Figure 3.8: Boundary effect around walls for configuration 1 (above) and configuration
2 (below). Voronoi cells behave differently around the static walls. Especially in a
narrow corridor, this boundary effect will have an effect in the measurement area.

is referred to appendix figure D.2 for figures. The density in a squarish Voronoi cell is

given by:

ρsqr =
1

4r2
(3.15)

The density of a hexagonal Voronoi cell is given by:

ρhex =
1

2
√

3 · r2
(3.16)

The density difference between a square and hexagonal Voronoi cell is then approximately

given by:

∆ρ =
0.04

r2
(3.17)

This difference is non-negligible regarding the 1/r2 dependency. It is also referred to the

representation in the appendix figure D.3. However, there may be cases where Voronoi

cells at walls appear in different forms such as triangles, which changes equation 3.15

and augments the density difference even more.

Furthermore, the relations found in figure 3.7 can be estimated by an exponential

function in order to establish a width-radius-density relation. Thus, an estimation of

the circle radius necessary in order to obtain maximum Voronoi densities is possible.

The approximated mean functions are given in equation 3.18 for configuration 1 and

3.19 for configuration 2. Both functions have a correlation index of 0.986.
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ρ(r) = 61 · e−11·r (3.18)

ρ(r) = 64 · e−11.1·r (3.19)

A further analysis is that of maximum possible neighbours. Figure 3.9 shows two

analyses for a hexagonal configuration with circle radius r = 0.175 m. On the one hand,

the agent network inside a corridor length of l = 2 m for all widths is determined. This

network grows with the size of the corridor as can be seen in Figure 3.10. However, for

the narrow corridor, this consideration results in a deviation from the linear relation

found between the wider corridors.

(a) w = 1.2 m (b) w = 2.3 m

Figure 3.9: Maximum possible neighbours for a hexagonal configuration in a given
area is lower in a narrow corridor as the number of agents only augments vertically,
whereas in a wide corridor it augments both vertically and horizontally. Moreover, the
circles can pack denser in a wider corridor.

On the other hand, an approach was used to determine immediate neighbours,

which is done within a circle area of r = 1 m. This aims at considering effects more

locally right before the exit. Here, a convergence to a maximum number of immediate

neighbours of about 28 circles can be seen, the narrow corridor resulting in 15 immediate

neighbours. This is due to the fact, that the number of agents in a narrow corridor

can only increase vertically, whereas in the wide corridor the arrangement can take

place in both directions as a vertical and horizontal augmentation. Furthermore, the

hexagonal configuration itself can better fill the interspaces in larger corridor widths,

which augments the packing of circles inside the circle area somewhat too.
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Figure 3.10: Reduced maximum number of neighbours in narrow corridor, in this
case for r = 0.175 m. Both the whole corridor area (15 immediate neighbours in narrow
corridor) and a circle area of r = 1 m show this behaviour, a convergence to 28 circles
obviously been seen in the constant circle examination for wider corridors

3.3 Preparation of initial conditions

This section focuses on the initial agent distribution and the generation of comparable

initial densities. This is necessary as this initial condition as influencing parameter

cannot be ruled out. In order to obtain stability of simulation results, a reasonable

number of replicated runs with respect to the initial densities needs to be made. The

RiMEA guideline [29] states that without a specific analysis, a number of 10 runs should

be carried out to ”allow a statistically sound statement”.

The trajectory calculation is done with JPScore for which a full exemplary initial

configuration file is given in the appendix A. As the experimental data holds best

empirically for a number of participants of around 50, the simulations are done with

N=50. Furthermore, N is in a comparable range so that experimental and simulation

curves can be put side by side. Nevertheless, simulations with N=25 and N=75 will be

kept out to analyse the simulation behaviour. However, it should be noted that there is

scarce experimental data to compare it to.

The initial Voronoi densities in the experiment are roughly identical and can be

found between 2-4 m−2. The respective values are summed in Table 3.3, the median

is given by 2.8 m−2. This initial condition should be met in the simulation as well.

Therefore, the following calculations are made for a specific number of agents N and
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Table 3.3: Initial Voronoi densities for selected experimental runs

run 050 060 110 120 150 160 230 240 250 260 270 280
ρ 2.5 2.5 3.3 4.2 2.1 2.7 2.1 2.4 3.2 2.8 3.5 3.0

desired initial density ρinitial relative to the whole corridor area. The number of agents

N that can be distributed inside a corridor of width w and length l with a desired initial

density ρinitial is then given by:

Ncor = ρinitial · wcor · lcor (3.20)

Now, two cases need to be distinguished. In the first case Ncor ≤ N , meaning that not

all agents fit inside the corridor, so that the number of agents to be distributed outside

the corridor area Nout is calculated by:

Nout = N − Ncor (3.21)

However, for the second case Ncor ≥ N more than N agents fit inside the corridor. As

the distribution is wanted for a specific number of agents N, a reduced length of the

corridor lred needs to be calculated:

lred =
N

wcor · ρinitial

(3.22)

It should be noted that ρinitial is calculated with respect to the whole corridor area and

not via the measurement area. The effective Voronoi density can only be measured

afterwards. Furthermore, Ncor is rounded and the subsequent calculations done with

that rounded value. If the first case comes into effect, the geometry thus needs to be

extended accordingly. The distribution area of number of agents Ncor is limited to

ymin = 0 and ymax = lcor. Table 3.4 gives exemplary calculated values for ρinitial= 2.5

and N = 50.

width (m) 1.2 2.3 3.4 4.5 5.6
Ncor 20 39 50 50 50
Nout 30 11 0 0 0
lred / / 5.9 4.4 3.6

Table 3.4: Calculated values Ncor, Nout and lred for 50 agents

In order to get a more homogeneous distribution within the corridor, several layers
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with groups are defined. This is further illustrated by figure 3.11, where the initial

distribution for one seed is displayed.

Figure 3.11: Snapshots of initial distributions. Agents are represented by blue dots,
layers indicated by dashed lines and the density measurement area drawn in red.

The number of agents Nout is distributed with the condition ymin = lcor without

layering. In the second case, the maximum distribution area for N is simply limited

by ymin = 0 and ymax = lred. Again to make the distribution in the corridor more

homogeneous, different layers with groups are defined.

From figure 3.12, it can be seen in the upper bar plot that the individual initial

Voronoi density in the simulation differs from the targeted ρinitial= 2.5. The lower and

upper boundaries of the experimental values are given by 2.1 m−2 and 4.2 m−2, which

equivalents to a maximum comparable difference of 16% downwards and 100% upwards.

The exceeding relative differences are thus coloured red. This shows that the generated

approach is just a work-around in order to fulfil the initial density requirement and

should not be understood as producing robust initial conditions, which would need

further development.

However, it is possible to take a look at the convergence of mean or strong convergence

of the generated initial Voronoi densities per width. The strong convergence Xn of n

independent runs for the quantity ρi is given by:

Xn =
1

n

n
∑

i=1

ρi (3.23)

The lower plot in figure 3.12 shows Xn for different number of runs up to 10 runs for all

widths. When simulating enough runs, the mean initial Voronoi density will converge.

This can be explained by the law of large numbers [30]. In this case, it always converges

to a density ρ ∈ [2, 4], which is rather near to the mean experimental Voronoi density of

2.8 m−2. Thus stable long-term results of random input values are guaranteed, which
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Figure 3.12: Top: scattering in initial Voronoi densities for all widths. Bottom: strong
convergence of Voronoi density mean for 10 runs for all widths showing that stable
long-term results of random input values are guaranteed, which verifies the sufficiency
of this approach for modelling comparable initial densities

verifies the sufficiency of this approach for modelling comparable initial densities. These

calculations are done equally for N = 25 and N = 75 in order to guarantee comparable

initial densities and can be found in appendix D.1.

3.4 Model parameters

This section addresses the determination of agent parameters, namely the desired speed

v0 and agent diameter size l. The pedestrian flow inside the simulation is adjusted via v0

as proposed in [31], the agent diameter size l determined such that maximum densities

observed in the experiment are feasible in the simulation. Calibration parameters are

altered to model high density states and further agent parameters such as time gap

parameter T repurposed as motivational parameter in the given model. Additionally,

the modelling of two types of agents is dealt with.
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3.4.1 Physical agent parameters

The mean outgoing flow for all runs in the experiment is around 1.1 s−1. This flow rate

is tuned in the simulation via v0 so that comparability is better achieved. The analysis

with the standard parameter set (l= 0.3, T=1.0, a=5.0, D=0.1) shows that v0 = 1.2

m/s gives best accordance. This is further illustrated by figure 3.13 which displays N-t

curves for all 5 widths for specific desired speeds v0.

Figure 3.13: N-t curves for all widths for different desired velocities v0 compared to
mean experimental flow depicted in black

The agent size l influences the maximum density possible. Therefore, the maximum

experimental density is taken into account to determine the standard agent size l for

the simulation. Calculating with the transformed equation 3.24 from equation 3.19 for

a maximum experimental density of 9 m−2, which is the contracted stage at maximum,

r = 0.175 m is obtained.

r(ρ) = − ln(ρ/64)

11.1
(3.24)

This is used as standard agent parameter size l, so that agents have a diameter of 0.35 m.

The pedestrian size l is a crucial parameter as it defines the maximum density reached.

It should be noted that this is of course a rather small shoulder width, literature [32]

giving an approx. adult shoulder width of l = 0.46 m. However, the area resulting

from this circle is about 0.096 m2. As pedestrians are better described with ellipses,

this area transfers into an ellipse with semi-axes a=0.23 m and b=0.13 m, which is a
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justifiable agent size. This makes the circle analogy comparable. Furthermore, even

when leaving this analogy as non-conclusive, the circle diameter of 0.35 m could be seen

as a contracted pedestrian.

As for the time gap parameter T, this is adjusted by default at T = 1 s as this

gives good correlation with the fundamental diagram, which is derived from empirical

measurements. However, this parameter could be of use for motivation representation.

Therefore it will be varied as well and discussed in the following section.

3.4.2 Reproduction of motivation

In this section, general thoughts are made regarding the representation of motivation

inside the model. It should be noted that until now the model contains no explicit

implementation for quantifying motivation. Possible working points are the direction

model and the optimal velocity function.

On the one hand, the direction model offers two calibration parameters: the repulsion

rate a and the repulsion distance D. The standard calibration is adjusted by default

with a = 5.0 and D = 0.1. The idea is to change these calibration parameters and use

them to reproduce low and high motivation conditions without them being motivational

parameters in the first place. Exemplary repulsion functions are shown in figure 3.14.

Figure 3.14: Representation of repulsion functions for altering repulsion rate a and
distance D in the operational model

The repulsion rate a in the model actually represents the influence from other

agents on an agent’s individual moving direction. Applying this to the real world, this
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parameter a has no meaning as it is a variable used for calibration purposes. However,

it could be interpreted as a behaviour of considering neighbours and taking neighbours

into account or not when deciding about the moving direction. Thus, it could be

used as one way of representing motivation in the model with the following approach:

highly motivated agents don’t take other neighbours into account when calculating their

moving direction, whereas low motivated agents want to cooperate and thus change and

adapt their moving direction. Therefore, it is expected that higher values of parameter a

will result in gap filling whereas lower values will cluster the agents. As for the repulsion

distance D, this parameter gives the range of parameter a.

With these assumptions, the calibration parameters a and D are varied through a

number of simulation runs for different widths. As for the sampling of these parameters

during the variation, a random sample would be very inefficient to test all necessary

combinations. Therefore, an orthogonal Latin hypercube (OLH) sampling [33] with

a specific design region of ∆a = 3.0 and ∆D = 0.06 is used to reduce the necessary

simulations without a validity trade-off. This is shown in figure 3.15.

Figure 3.15: Orthogonal Latin hypercube sampling for repulsion rate a and repulsion
distance D, the blue square representing the design region and a blue hexagon the
specific parameter set

The OLH approach offers the benefits of an ordinary Latin hypercube by considering

the samples already calculated, but also guarantees for a uniform scattering, more

precisely density, in all design regions. The emerging dynamics from these variations
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can be found in the results section.

On the other hand, the optimal velocity function offers a second approach to

further model a high motivation state. The latter function uses s, l, v0 and T as input

parameters. The pedestrian size l and v0 are fixed by the analyses above. The minimal

spacing s is calculated configuration-dependent. However, a variation of the time gap

parameter T is possible. Changing the time gap parameter T will result in different

piecewise linear velocity functions. Some example functions for T = 1.0, T = 0.5, T =

0.25 and T = 0.1 are shown in figure 3.16.

Figure 3.16: Representation of velocity functions for altering time gap parameter T
in the operational model

By reducing this parameter, the agents velocity can be increased even when the

spacing is low up to the point where:

lim
T →0

V (s) = v0 (3.25)

This would make the speed a driving parameter for motivation in this model and

ultimately result in a fast contracting stage. Furthermore, the time gap T actually has

a real-world meaning in that it represents the urge to move up when there is free space.

However, it should be noted that both approaches to reach a high motivation state

in the simulation shown here do not model the phenomena of pushing.
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3.4.3 Defining different types of agents

The experiments show two types of people. Therefore, an approach to represent and

analyse this circumstance is taken by defining two populations, which are in fact two

different operational models in action. This is done with respect to different parameters

a and T, the repulsion distance D being the same for everyone. A simple modulo

condition is checked on the specific agent’s identifier in both the direction and velocity

model to split the agents into two populations. To be able to differentiate the two

populations, the highly motivated population is highlighted with an available spotlight

color mode offered by JPScore.

Code snippets in appendix B show an exemplary implementation for time gap

parameter sets T = 0.25 and T = 1.0 as well as repulsion rate parameter sets a = 2.5

and a = 5.0 with D = 0.05.

3.5 Further configuration setups and automation

Concerning the route choice algorithm, two approaches are possible: a navigation graph,

which builds a permanent routing network by using the Dijkstra algorithm or a floorfield,

which uses the Floyd-Warshall algorithm to build individual floorfields. The advantage

of the latter is the non-necessity for convex rooms. However, it should be noted that

the floorfield router gives intermediate targets. Simulations will be done with both

approaches to calculate the shortest path and valid desired directions. Furthermore,

the maximum simulation time is set to 200 s and seeds will be automatically varied.

Concerning the measurement of density and flow, JPSreport is used. The area for

measuring the Voronoi density is given by a square built with xmin = -0.4 m, xmax =

0.4 m, ymin = 0.5 m and ymax = 1.3 m. The measuring line for the outgoing flow at the

exit is given by xmin = -0.25 m, xmax = 0.25 m at y = 0 m. A full exemplary inifile is

given in the appendix A.

The simulation variations concern 3 model parameters, the number of agents and

different types of agents. This will result in a number of simulations, so that automation

is a key component of this thesis. Therefore, several bash and python scripts are written

to facilitate the automatic trajectory calculation and data readout. A list of all written

bash and python scripts can be found in appendix E.

Generally, the work flow begins with a master initial configuration file, which is

manually created and used as a basis for all simulations. For a given set of parameters,

a master bash script will produce the desired number of directories with the necessary

initial configuration files, adapt the seeds and update the parameters. A second bash

34



CHAPTER 3. PRELIMINARY WORK AND METHODOLOGY

Figure 3.17: General automated work flow beginning with a master initial config-
uration file and a master bash script producing specific simulation directories. A
second bash script will execute the simulations for all seeds and widths using JPScore.
JPSreport then produces analysis data which is plotted using various python scripts.

script inside every directory will execute JPScore to calculate the trajectories and

JPSreport to analyse them. An automated flow check is done as well. A python

script will then read out the produced data. Further plotting scripts will produce

Voronoi diagrams, time-density series, width-density relations in a specific time interval,

cumulated trajectories and individual distance and time to target plots.
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Chapter 4

Results and analysis

4.1 Variation of corridor width

This section presents the simulation results for the corridor width variation according

to the five specific experimental widths.

4.1.1 Voronoi densities

A first glance at Voronoi diagrams in figure 4.1 for all corridor widths at t = 5 s shows

that the density in front of the bottleneck gradually increases, the density for a corridor

width of 1.2 m being significantly lower in comparison to a corridor width of 5.6 m.

Thus, a general density increase in front of the bottleneck with the enlargement of

corridor width can be observed in the simulation. Two important observations can be

made: individual Voronoi cells reduce the most between corridor width w = 1.2 m and

w= 2.3 m and the wall influence diminishes from width w = 3.4 m onwards.

Figure 4.1: Voronoi plots for t = 5 s for all widths indicating a continuous density
increase, the main increase being situated between w = 1.2 m and w= 2.3 m
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However, one can note as well that the density increase for the widest corridor is

distributed uniformly in a circular shape and that agents further away from the exit

actually show Voronoi cells of the same magnitude found in the more narrow corridors.

This indicates a model behaviour that may be independent from the width variation

and is further discussed in section 4.2.

To extent these snapshot results, the specific Voronoi density in front of the bottleneck

inside the measurement area for a time window ∆t = 5s reaching from t = 5 s to t =

10 s is read out. From this, an individual mean value can be calculated. The simulation

results for every width are backed up with 10 calculated seeds, so that all in all 50

simulations make up the width-density analysis. When analysing all data points, an

overall scattering in density for different seeds but the same width is observed. This is

related to small differences in the initial densities and thus slightly different density

trends. Thus, a general mean for every width is calculated. These mean values are

then interpolated by an exponential function. The resulting curve is shown in figure 4.2

together with both curves resulting from the experimental data. The exponential best

fit is given by 5.48 · (1 − e−0.45·x).

Figure 4.2: Condensed width vs. density plot. The dark blue and red lines represent
the experimental data for low and high motivation, whereas the grey line is the simulation
outcome with N=50, a=5.0, D=0.10, l=0.35, v0=1.2 and T=1.0

In general, the generated simulation curve for the width-density relation is similar

to the experimental curve of low motivation. At first, this makes sense and could be
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expected as the model does not account for any motivational parameter in this stage. In

addition, this width-density relation better illustrates the fact that the density increase

is rather significant at the beginning, nearly ∆ρ ≈ 2 m−2 for a width transfer from w =

1.2 m to 2.3 m in comparison to ∆ρ ≈ 1 m−2 for a width transfer from w = 2.3 m to

5.6 m.

Furthermore, a look at the time density series in figure 4.3 gives a greater insight

into the evolution of the density in front of the bottleneck for all widths. Here, series

for 3 seeds for every width are represented.

Figure 4.3: Simulated time-density series for 3 seeds and 5 widths with standard
calibration parameters and customized agent parameters

It can be seen that for a width of 1.2 m, the density drops to about 2 m−2 just like

in the experiment. The trend for this width also shows an oscillating nature, which

indicates a repeating and stationary state. This does not happen for all remaining

widths. For a width of 2.3 m, the resulting density in the measurement interval is nearly

twice as high, but always lower than the densities for the three remaining widths. The

time density series for width of 3.4 m is centered between those of 2.3 m and the two

remaining widths, 4.5 and 5.6 m. The latter give the highest densities, but vary and

superimpose. All together, the time-density series of the three highest widths are again

rather similar.

Moreover, the simulation curves show less noise than those from the experiment and

intermediate peaks do not arise. The run durations are situated between 40 s up to
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about one minute. Obviously, these run times are rather similar in the simulation due

to the constant number of 50 agents.

4.1.2 Trajectory analysis

To get an overview of the overall dynamics, condensed trajectory plots are generated

for all corridor widths as shown in figure 4.4. All trajectories are plotted with low alpha

values to facilitate the emergence of spatio-temporal patterns.

(a) 2 stable lanes,
cut at exit

(b) 4 stable lanes,
small cluster

(c) lanes dissolving
more into cluster

(d) cluster further evolving (e) full cluster

Figure 4.4: Spatio-temporal patterns for all widths from condensed low alpha trajec-
tories

As for the narrowest corridor, the condensed trajectories result in the formation

of two stable, equally opaque queues. This indicates that these both lanes have an

identical degree of capacity utilisation. Both queues intercept right before the exit. The

trajectories for width w = 2.3 m emerge to 4 lanes at the beginning and intercept earlier.
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A significant fraction of trajectories cut in from both sides right before the exit. For

larger widths, this observed lane formation is continuously dissolved and trajectories

intersection happens even earlier. This results in a sort of clustering.

The essential transition from a lane configuration into a cluster-like structure already

happens between w = 1.2 m and 2.3 m. To illustrate this transfer more clearly, figure 4.5

shows all trajectories together in one plot. The doubling of the corridor width makes

the appearance of at least four more routes possible. In wider corridors, these side

routes persist and new routes emerge between those routes established in the corridor

width before.

Figure 4.5: Condensed trajectories for width 1.2 m in red and for width 2.3 m in blue.
2 lanes meet in the narrow corridor, whereas at least 6 have to meet in the 2.3 m wide
corridor

The reason for these different configurations appearing is not dismissed lightly as

it is not straightforward. Both the modelling environment and the real world show

lane formations in narrow corridors and clustering in wide corridors, which reveals

an inherently physical character. In the following, the simulation conditions and the

operational model for different widths are further analysed to get a better understanding

of this phenomena through simulation analysis.
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4.1.3 Initial desired directions

First, a look at initial conditions is taken before any movement occurs. The desired

moving direction, represented in the simulation by e0, is either given by the middle

point or the nearest point of a segment line that needs to be crossed by an agent. In the

narrowest corridor, the desired moving direction is rather the same for everyone as can

be seen in figure 4.6a, which makes concurring aspects small. Therefore, the probability

of interaction and thus the probability of collision is low. In the widest corridor, the

desired moving directions are different as is seen in figure 4.6b and concurring aspects

are high, which means that the probability of interaction and the probability of collision

is high. To further strengthen this, one could calculate the divergence of both unit

vector fields. In the narrowest corridor, this divergence would evaluate to zero, but

would be non-zero and positive in the widest corridor.

(a) width w = 1.2 m (b) width w = 5.6 m

Figure 4.6: Representation of desired direction e0 at t= 0.12 s using global shortest
router without floorfield

A much more interesting analysis is however the consideration of changes in x-

components of desired directions for all agents. For this, use of box plots is made. These

can represent the minimum and maximum, first and third quartile, mean and median

of a given data-set in a very consolidated format. Figure 4.7 shows these box plots for

4 different runs and all widths. As for the narrowest corridor, the x-components of the

desired directions are mainly situated around 0.1 vector units, maximum values of 0.2
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being possible due to being near to the exit. From then on, the following corridor widths

show a successive augmentation of the mean and median x-component. Furthermore,

the domain is extended continuously and the box plot, containing 50% of the respective

data, grows accordingly. This analysis shows the actual divergence in vector directions

obtained when augmenting corridor width.

Figure 4.7: Boxplots of absolute x-components per width for four different seeds
showing minimum and maximum, first and third quartile, mean (dashed green line) and
median (orange line) of a given data-set, dots represent outliers. The quantity of agents
possessing pronounced x-components increases with width w. A red line additionally
links the medians to show the increase, which is a different course per width depending
on the seed-dependent initial distribution

As a side remark, it makes a difference for this initial stage analysis as to which

router is used. Looking at the e0 directions when using the floor field router, different

desired directions result. This is due to the intermediate calculation of targets. The

relevant plots are shown in the appendix figure D.1.
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4.1.4 Moving directions

Coming from this stationary observation, the movement stage is analysed. For a given

time step, the simulation determines the desired direction e0 and the repulsion term,

which will give the moving direction ei. The repulsion term is dependent on the repulsion

rate a, repulsion range D, pedestrian size l and the individual distance between the

agents sij. From these parameters, only sij can be different in the two configurations as

the other parameters are left constant. However, the specific repulsion is calculated for

every pedestrian and so the repulsion term is a sum parameter. Due to the boundary

condition difference of maximum possible neighbours made clear in section 3, this term

will always be bigger for wide corridors, even when at maximum densities.

As this sij is reduced from the pedestrian size l, the term inside the exponential

function and thus the Rij term will be high when sij is small. Thus, taking a look

at both corridor configurations, the number of small sij is low in the narrow corridor

and high in the wide corridor. Therefore the repulsion sum will be high in the wide

corridor and rather low in the small corridor. Indeed, when reading out the values of

this sum term, it can be seen in figure 4.8 that for w = 1.2 m, these factors are rather

low whereas high factors are reached in the wide corridor with w = 5.6 m.

Figure 4.8: Magnitude of repulsion sum for narrow and wide corridor for stationary
state (after t = 2 s)

Therefore, ei in small corridors will only differ a little from e0. In wide corridors, ei
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(a) width w = 1.2 m (b) width w = 5.6 m

Figure 4.9: Moving direction ei in the simulation for narrow and wide corridor

will be significantly different from e0. This is shown qualitatively in figure 4.9. Further

plots in the appendix figure D.4 accompany this. As a consequence, agents will have

to make significant adaptations when starting to move in wider corridors, whereas

agents in the narrowest corridor only need to adapt a little when starting to move.

This ultimately favours a lane arrangement for the narrowest corridor from this initial

condition, however opens up the possibility for overtaking and space filling in the more

wider corridors.

4.1.5 Possibility of space filling and overtaking

Furthermore, due to the different arrangement of walls in a narrow and wide corridor,

the overtaking and space filling possibility will augment when widening a corridor.

These possibilities will be used by the agents as already shown in the trajectory analysis.

As this possibility is however non-existent in the narrowest corridor, solid queues, whose

gaps can be no more filled, develop. Figure 4.10 shows snapshots at different times for

the widest corridor. Here, 10 agents are situated in an area delimited by xmin = -0.6

m and xmax = 0.6 m, thus possessing an e0 parallel to the side walls and are coloured

blue. The other agents around them, 20 on every side, are coloured grey. At t = 0 s,

the blue agents are starting to build up a two-agent-wide lane with spaces. At t= 3

s, first infiltrations from grey agents happen. The width of the lane is reduced from 2
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agents to 1 agent respectively grey agents will take spots between the blue agents. This

circumstance of being able to zip in is exclusive to the wider corridors and will make

the interspaces disappear.

Figure 4.10: Snapshots at different times for a corridor width w = 5.6 m showing
space filling

Furthermore, evaluating distance to target vs. time to target plots from the sim-

ulation shown in figure 4.11, the courses of the widest corridor show overtaking and

cutting in line processes as there are agents nearer to the target that need longer than

agents further away from the target. For the narrow corridor, a linear relation between

distance and time to target is found indicating no filling or overtaking processes. The

curves for an intermediate corridor width of 2.3 m merges both behaviours.

This also means that the minimal spacing s used for the velocity calculation is

highest in the narrowest corridor. As the optimal velocity function uses v0, s, l and

T as input parameter, from which only s varies, higher velocities will be reached for

narrow corridors.

Therefore, much steeper curves in figure 4.11 are observed for the widest corridor

meaning that within a defined period of time there is no big reduction of the distance

to the target. Thus the steepness of these curves represents the velocity in an inverse

relation: the steeper the curve, the lower the velocity. This is also in accordance with

the fundamental diagram, which reports that lower velocities will result in denser states.

Comparing these plots in figure 4.11 to the experimental ones, the accordance is

good for the narrowest corridor with the exception of not having the waiting behaviour,

which is not modelled. For the widest corridor, a significant steeper curve is seen and

the free speed movement behaviour is absent because the initial distances are lower

than in the experiment due to guaranteeing comparable initial densities. In addition,

the curves for the widest corridor are bended like the experimental ones from high

motivation which shows that the model approach indeed already shows a behaviour

that was not intended to be modelled. It is again referred to section 4.2.
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Figure 4.11: Time vs. distance to target plots showing overtaking

4.1.6 Blockage occurrence

A further and last observation made is that of blocking occurrence. A blocking stage is

defined as a time interval ∆t ≥ 2s in which no agent passes the exit. In the narrowest

corridor, no blocking is observed. For the 2.3 m wide corridor, short blocking stages

occur. For the widest corridor, some blocking stages double or even triple in duration.

This is shown in figure 4.12. This observation needs to be considered and is further

analysed in the following section as it is also linked to the number of agents.

Figure 4.12: Blockage occurrence for N=50 for corridors of width w = 1.2 m and w
= 5.6 m
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4.2 Variation of number of agents

The filtering of the experimental data set aimed at eliminating influences from the

population size. However, the author considers a variation of this initial condition to

be useful as well. Based on the standard simulation set with different widths, two

variations in the form of N = 25 and N = 75 with constant initial densities are done.

4.2.1 Voronoi densities and blockage occurrence

Reading out Voronoi densities for different population sizes at specific widths, as

represented in figure 4.13, several observations can be made. First, the narrowest

corridor does not show any changes at all. This makes sense, given the fact that a

stable queue can form and persist.

Figure 4.13: Influence of number of agents (N=25, N=50, N=75) on the density in
front of the bottleneck for different widths w = 1.2 m, w = 3.4 m and w = 5.6 m

For wider corridors, a general density increase can be seen with a population size

increase. However, for the corridor of width w = 3.4 m, the mean density for N=75

is lower than for N=50. This could be due to a runaway value for N=50, so that

more simulations would actually result in a horizontal line between N=50 and N=75.

Furthermore, comparing N=25 for all widths, the resulting density first augments but

then decreases again. This observation is evidence for the importance of arrangement:

25 agents in a corridor width w=3.4 m are still able to build up longer queues, whereas

in the widest corridor these are rather short as most of the agents arrive from both

sides.

The resulting width-density curves for N=25 and N=75 are shown in figure 4.14.

Higher densities are reached for a population size of N=75. Furthermore, the density
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maxima for N=25 are achieved earlier, whereas they are delayed for N=75 in comparison

to N=50.

Figure 4.14: Time density series for N=25 and N=75 with early and delayed maxima

As observed in the section before, blocking occurs in wider corridors for N=50.

However, the variation of the population size shows that the blocking occurrence changes

too. For N=25, the number of blocking stages seems to be less when considering the

reduced amount of time. For N=75, the blocking occurrence seems to be reduced as

well.

(a) N=25 (b) N=75

Figure 4.15: Blockage occurrence for N=25 and N=75

The results show that there is an interference between blocking, population size and

the resulting density change. To further study this, a specific test scenario is set up.
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4.2.2 Test scenario for model behaviour

The test scenario is designed one-dimensionally to eliminate the influence by e0 and

the first agent is given a desired velocity v0 = 0 m/s. This front agent is comparable

to a blocking or clogging situation provoking a jam. The spacing between the idle

agent in front of the exit and a second agent approximating is then measured. The

number of agents behind the second agent is augmented continuously. The spacing

should supposedly be constant irrelevant of the number of agents. The general setup is

shown in Figure 4.16.

Figure 4.16: One-dimensional test scenario to analyse the influence of number of
agents on spacing behaviour between second and first agent with v0 = 0 m/s

Analysing the distance for a case of 2 agents and 10 agents, the distance behaviour

with only e0 activated will be the same. However, the distance behaviour with repulsion

activated shows a major difference. For lack of space, these plots are shown in the

appendix figure D.5.

In the simulation, different number of agents result in a decrease of the spacing

between the idle and second agent. Thus the in-between spacing decreases from 0.16 m

for 1 more agent to 0 m for 6 more agents as can be seen in Figure 4.17. The reason

for this model behaviour is not known, but could be linked to the summation term for

calculating the moving direction ei. Further investigation is necessary. This simulation

behaviour is however responsible for augmenting the density in wide corridors as shown

in figure 4.13 when the number of agents is high enough to produce blocking. In a

narrow corridor, there will be no blocking or clogging because a stable lane configuration

can be established.

It should be kept in mind that this effect could blur the observed density increase for

the width variation done previously, so that it is actually overestimated. Nevertheless,

even if this simulation behaviour was not intended to be implemented, it seems to

reproduce the experimental observation with higher motivation well, making it highly

usable for further modelling.
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Figure 4.17: Spacing between idle agent in front of the exit and second agent for
different N

4.3 Variation of motivation

The occurrence of pushing seems to go hand in hand with a higher motivation. As

the goal of this thesis is not to model the behaviour of pushing, alternate ways are

searched for to reproduce the experimental dynamics to understand them more. In that

context, this section presents the variation for the repulsion parameters a and D, which

are calibrated at default with a = 5.0 and D=0.10. From there on, a variation of the

time gap parameter T is made. The resulting approach is then applied to simulate one

highly motivated crowd respectively two groups with different motivations.

4.3.1 Calibration parameters a and D

Based on the standard parameter set, the repulsion rate a and repulsion distance D of

the operational model are both reduced and augmented and all permutations calculated.

The identical calibrated parameters for walls are kept at default. Every parameter set is

calculated for 5 different runs with their respective seed. Figure 4.18 shows a condensed

plot for a total of 9 variations and their influence on the width-density relation.

Generally, it can be seen that the variety in achieved densities is higher for wider

corridors. Furthermore, a and D produce opposite results depending on the corridor
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Figure 4.18: Variation results for a and D with intersection between width w = 1.2
m and 2.3 m

width: whereas the smallest values of a and D produce the highest densities in the

widest corridor, the exact same values produce the lowest densities in the narrowest

corridor.

By consequence the different width-density curves intersect. The intersection or

even pivot point of the curves is situated at around 1.6 - 2.0 m. This intersection may

indicate a primary impact disappearing, namely the impact of walls. This results in

a translation in configuration and thus the model behaving differently with identical

calibration parameters. This could be extended to the interpretation of a queuing

configuration changing into a clustering configuration between the two widths of w =

1.2 m and w = 2.3 m. However, there are other intersection points inside a specific

parameter set at different locations, so that this interpretation should be dealt with

caution.

This analysis makes clear that recalibrated a and D parameters have to be used to

reach high density states. In concrete terms, the model calibration parameters have to

be utilized in certain domains to specifically produce such conditions.
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4.3.2 Time gap parameter T

This variation focuses on the time gap parameter T, from which values of T < 1 s

should show a faster contraction. Extreme reduction of the time gap T will result in

a maximum agent speed of 1.2 m/s. Moreover, no variance is used so that all agents

get the exact same parameter value. This is necessary to get a comparable modelling

approach to pushing by making every agent use the process of moving up.

Figure 4.19: Variation results for T, all curves showing initial bend

During a first variation of T, the calibration parameters a and D are kept at default

stage. Figure 4.19 shows that a successive reduction of T increases the density in

narrow corridors. Densities in narrow corridors can even become higher than in wide

corridors when T < 0.5 s as profound model instabilities arise. In a second variation

run, recalibrated a and D values are used in accordance with the section before to reach

higher densities. Thus, a fast contracting high density stage in the form of one highly

motivated crowd can be simulated. This is illustrated in appendix figure D.6.

From figure 4.19, it can however be seen that T needs to be reduced significantly

more to get density increases for the smaller corridor widths. For example, only T=0.05

s will result in 3 agents side by side in the narrowest corridor. However, all curves from

the generated runs show a bend for narrow corridors: the density reached is always

inferior to that of the wide corridors.
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4.3.3 One motivated crowd vs. two types

It is recalled that the simulation of this fast contracting stage is a very artificial scenario,

which results in permanent blocking. The used parameter set is T = 0.05 s, a =1.5 and

D = 0.05, which is globally used without any variance meaning that all agents behave

identical. A look at the Voronoi plots in figure 4.20 for t= 5 s shows an augmentation

of the high density area for increasing corridor width and gives an interesting insight

for observing lower densities in the narrow corridor.

Figure 4.20: Voronoi plots for t = 5s for four corridor widths. The boundary effect is
high in the narrow corridor whereas it is obsolete in the wider corridors. Parameters
used are N=50, a=1.5, D=0.05, l=0.35, v0=1.2 and T=0.05. The high density area also
increases with increasing corridor width.

In fact, the middle lane in the narrow corridor is nearly at maximum density, however

the two side lanes are not. These lanes cannot be additionally contracted as walls

instead of agents restrict their available area. The space around these walls isn’t used as

effectively. Furthermore, the direction of contraction is directed vertically via the exit,

which makes it even more improbable to contract horizontally. In the wide corridor,
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mobile lanes of agents replace the walls. These can actually have an effect on the

Voronoi cells of the middle lanes 2 and 3, ultimately reducing their individual cell

size. This synthetic scenario gives a good explanation for the initial bend of the high

motivation curve: the boundary effect of walls in the narrow corridor is proportionally

higher. It happens in the wide corridor as well, but it has no impact on the measurement

area in front of the bottleneck. It is also referred to section 3, which mathematically

shows the density difference between a squarish Voronoi and a hexagonal Voronoi cell.

Figure 4.21: Condensed width vs. density plot. The blue and red lines represent the
experimental data for low and high motivation, whereas the grey line is the simulation
result with the parameter set N=50, a=1.5, D=0.05, l=0.35, v0=1.2 and T=0.1

A synthetic fit of the experimental width-density curve is possible with the given

parameter set and shown in figure 4.21. The density readout fits the width-density data

from the experiment optimally, again the narrowest corridor showing the lowest density.

However, taking a look at the simulated trajectories, this fit is not very realistic as

the generation of time density series as well as distance and time to target plots is

not possible due to permanent blocking occurring rather fast. The latter may be the

underlying reason that the density can build up so high and persist.

One reason for this blocking could be that all agents have the same parameters,

which is unsolvable by the model when symmetric conditions appear. As the simulation

results are fogged by this blocking state, an alternative simulation approach is done.

One possibility of solving this is the generation of two groups with respect to T. This is
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backed up with the knowledge that the experiment shows two types of people too.

Simulations with 2 groups of different T values and a=1.5 reduce the blocking, but

it is still significant so that a=1.5 seems to be too restrictive and could as well be the

reason for blocking. Thus recalibrated repulsion rate values are used by defining the

lowest repulsion rate value as a= 2.5. Thus, two final groups are defined: one having a

small time gap T=0.1 and a low repulsion rate a=2.5 and the other group having a high

time gap T=1.0 and the standard repulsion rate a = 5.0. The resulting time-density

series in figure 4.22 are blocking-free and begin to look like those from the experiment.

Furthermore, Voronoi cell plots showing very individual Voronoi cells (c.f. appendix

figure D.8) and not one big cluster as well as distance vs. time to target plots are able

to be produced. This basically shows that the experimental runs can be reproduced to

some extend by changing the motivation approach selected in this thesis.

Figure 4.22: Time-density series for N=50, a=2.5/5.0, D=0.05, l=0.35, v0=1.2 and
T=0.1/1.0.

Looking at snapshots from the simulation in figure 4.23, it is however clear that

in this specific run the narrow corridor is not able to build up the equivalent density.

Highly motivated agents are purely jamming behind the lowly motivated ones as they

are not being able to push. Interestingly this is not significant for the wide corridor

where the density can build up rather good without the modelling of pushing. A cluster

occurs as this state of the system is simple to reach. This shows again the significant

effect of boundary conditions. In the narrow corridor, there is also just a density peak
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reached, whereas in all other corridor widths the maximum density is maintained during

a certain period of time as indicated in figure 4.22.

Figure 4.23: JPSvis snapshots for simulating two types of agents, green agents being
highly motivated ones. In the narrow corridor, highly motivated agents are purely
jamming behind the lowly motivated ones as they are not being able to overtake or
even push them. This is not significant for the wide corridor where the density can
build up rather good in the form of a cluster given overtaking possibilities, but without
pushing modelling.

In a further time-density analysis, two different situations in a corridor width of

1.2 m are provoked. Two seeds are selected in the way that they facilitate overtaking

behaviour or actively inhibit it by either placing lowly motivated agents isolated or in

groups side by side. The latter will make overtaking much more difficult as units of two

lowly motivated agents serve as plugs in the corridor, whereas isolated lowly motivated

agents are easy to overtake. Illustrating snapshots can be found in the appendix

figure D.7. The two resulting time-density series can be seen in figure 4.24 together with

the reference case from the above figure 4.22. The run with high overtaking possibility

now shows comparable behaviour to that of the other corridor widths with a stationary

density state, whereas the run with no overtaking opportunity postpones the density

peak to about t= 30 s. It is important to note that these differences in dynamics can

only be grasped when looking at the entire time-density series.

Besides time-density series, significant differences for this high motivation approach

can be seen within the agents’ trajectories. Therefore, condensed trajectories with low

opacity are produced again and are represented for narrower widths in figure 4.25.

The down scaling of the time gap parameter T, which is a time scale reduction of the

contraction, lets the ordered structures in the lower part of the more narrower corridors
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Figure 4.24: Time density series for 3 runs with N=50, a=2.5/5.0, D=0.05, l=0.35,
v0=1.2 and T=0.1/1.0. The possibility of overtaking lowly motivated agents results
in comparable time density series as for other corridor widths. Inhibiting overtaking
postpones this density increase, resulting in a jam of highly motivated agents, which
shortly peaks in density right before the exit.

(a) w=1.2 m (b) w=2.3m (c) w=3.4m

Figure 4.25: Spatio-temporal patterns for narrow corridor widths from condensed low
opacity trajectories. A reduction of the contraction time by the time gap parameter T
lets the ordered structures in the lower part of the corridors disappear.
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disappear. A significant impact by this reduction on the more wider corridors is not

seen. Thus, a smaller fill or in this case ”moving up time” dissolves a lane configuration

into a star-like one, showing that the aspect of time scales is important.

Furthermore, relevant distance to target vs. time to target plots can be found in

figure 4.26. By simulating two types of agents, the simulation analysis is able to show

that highly motivated agents travel more effectively through space. This can be shown

in a demonstrative way in a wide corridor (c.f. figure 4.26b), where nearly all highly

motivated agents at the beginning show courses parallel to the x-axis (space component)

whereas lowly motivated ones at the beginning show courses parallel to the y-axis (time

component). The latter have to wait from the beginning onwards and are thus much

more stuck in time.

What’s more, the linear relation for all agents observed in the narrow corridor for

low motivation only holds up for highly motivated agents in this case (c.f. figure 4.26a).

Two types of agents result in differences in times to travel through the corridor. Thus,

the courses are staggered. Lowly motivated agents even sometimes have to wait right

before the exit as highly motivated ones shove into place.

(a) w=1.2 m (b) w=5.6m

Figure 4.26: Distance to target vs. time to target plots for two types of agents.
The linear relation in the narrow corridor only holds up for highly motivated agents
shoving into place so that lowly motivated ones have to wait. In a wide corridor, highly
motivated agents show courses parallel to the x-axis at the beginning whereas the
courses of lowly motivated ones are parallel to the y-axis (time component).
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4.4 Discussion

4.4.1 Simulation outcome with low motivation

The simulations show that different corridor widths result in different trajectory patterns.

According to the simulations realised, the density increase for low motivation and

comparable to normal circumstances is due to a transfer from a lane into a cluster

configuration due to changing the placement of corridor walls. This enlargement

ultimately is a change in dimensionality, a transfer from a nearly 1-dimensional narrow

corridor to a 2-dimensional wide corridor by a different arrangement of the side walls.

Basically, the boundary conditions are changed and allow the below-mentioned factors

to arise.

The position of the walls affect the initial desired and moving directions of the agents,

their possibility of space filling and overtaking as well as the blockage occurrences in

front of the bottleneck. All these factors can actually be summed up as interaction and

negotiation issues [11] from which concurring results. This behaviour is rather small

in a narrow corridor, but becomes evident in larger ones. This is further supported

by the successive change of the x-component concerning the agents’ desired direction.

With increasing width, more agents simultaneously access the same area in front of the

bottleneck.

Primarily the fact that two agents take up the total width in a narrow corridor,

making it impossible for other agents to pass them, will finally result in static lanes in

a narrow corridor, but dynamic lanes with short lifespan in the wider corridors. It is

commonly observed that the distance pedestrians keep to one another increases with

their walking speed. General arguments include the larger space for taking a step and

a safe gap to avoid collision [11]. The simulations show this exact behaviour for agents

when comparing a narrow and wide corridor.

All together, these phenomena could explain the density increase in front of the

bottleneck when enlarging the corridor width for low motivation. However, the model

behaviour depicted in section 4.2 blurs these findings, which is indicated by the homo-

geneous density increase. The model reduces the spacing between agents when there

is a jam, which is not intended by the implementation. Furthermore, the blocking

occurrence is dependent on the number of agents. These two factors synergize to

produce higher densities. However, when the number of agents is small, the probability

of clogging or a build-up of higher density is not possible, so that the effect doesn’t play

in wide corridors. This could be related to initial density distribution as with N= 25,

rather no agents will be coming from the back in the wide corridor. This could also
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explain why higher densities are reached in a middle wide corridor, where this ratio is

higher. Thus the density increase cannot be solely accredited with the factors above,

which leaves the exact trend of the width-density relation still open.

4.4.2 Simulation outcome with high motivation

Concerning the density increase for high motivation, which could also represent people

being in a hurry or emergency situation, it is important to note that a contracted stage

is reached in every corridor. The initial bend in the width-density curve is related to

two main issues. Once again the boundary effect of the walls has an impact in the

narrow corridor. In the wide corridor this boundary effect does not play inside the

measurement area. This reduced efficiency of using space at boundaries, in this case

walls, compared to the center of the bottleneck is also reported in [1]. Furthermore,

the dimensionality difference allows for the contraction of the agents to take place in

only one dimension in the narrow corridor, whereas it is a two-component contraction

in the wide corridor. A reduced number of near neighbours for the narrow corridor is

important as well.

A synthetic fit with the contracted stage is possible, but doubtful when looking

at the trajectories. Therefore a plausible approach, which does not exactly fit the

experimental data, in the form of generating two groups with regards to repulsion rate

a and time gap parameter T was done. The resulting blocking-free time-density series

show that the high density state in wider corridors is not impaired by this change, but

that narrow corridor will produce a different output. However, when comparing runs

with overtaking and no overtaking possibility in the narrow corridor, a comparable

behaviour can be seen in the narrow corridor.

This indicates that a high density state is reachable just as well when highly

motivated agents can unfold their potential. In the narrow corridor, a high density is

build up when overtaking is possible or postponed to a later stage when more highly

motivated agents fill up the corridor. This indicates that in such a configuration the

ratio of high motivated agents needs to be rather high. This state would be reached

during every run when some kind of propagation was implemented. The need for

modelling of pushing is therefore evident. Further interesting analyses would then be

variable percentages of both populations, e.g. 70:30 or 20:80 etc.
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4.4.3 Suggestions for model extensions

This thesis used a simple approach by moving up agents with no propagation of relevant

quantities. Therefore, a general approach for pushing is needed primarily.

Relevant cases need to be defined for when pushing occurs respectively can occur.

Generally, pushing is not happening when pedestrians can move at free speed, but when

people either want to go faster than their predecessor or get stuck and have physical

contact. This differentiation could be done via a velocity difference ∆vij = vi − vj

between a preceding pedestrian i and pedestrian j or a condition for contact at standstill

with the spacing being minimal (ǫ), which could be mathematically formulated as:

p(vij) =























∆vij ≥ 0 no pushing

∆vij < 0 pushing

vi = 0 with sij = ǫ pushing

Furthermore, a zone in which the respective agent can unfold his pushing behaviour

needs to be determined, which would be limited to the pedestrians in front. This is

shown in the left illustration in figure 4.27, where only the relevant agents i, k and l are

represented for an agent j.

(a) relevant pushing zone (b) propagation of pushing

Figure 4.27: Illustrations for pushing modelling. Left: a zone in which the respective
agent can unfold his pushing behaviour needs to be determined, which would be limited
to the pedestrians in front. Right: propagation of pushing not only influences the agents
directly in front, but also agents further away in contact with the agent being pushed

The next step would be to define a way of representing pushing in a velocity-based

model. One way could be the imposition of desired velocity of the pushing agent to the

agent being pushed. Further modelling accounts for the propagation of this imposition,

which could be done via projections of velocities or momentum calculations. This

is further depicted in the right illustration in figure 4.27 showing that the pushing

behaviour not only influences the agents directly in front, but also agents further away
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in contact with the agent being pushed.

Together with this goes the implementation of a desired gap concept, which could

also be expressed as a waiting algorithm or a personal space zone in order to better

represent queuing behaviour of pedestrians. This desired gap can be intruded into. The

algorithm implemented until now is faulty and results in different gaps depending on

the number of agents behind the considered agent. Interesting work concerning queuing

simulation has been done in [34, 35]. Concerning the desired gap or a personal space

zone, [36] gives proposals.

Figure 4.28: Desired gap or personal space zone represented for a normal and reduced
case. ra is the agent’s radius and rps the radius of the personal space zone

Furthermore, the fact that human bodies are deformable to a certain degree should

be considered, making their physical boundaries dynamic. This lack of contraction of

an agent was solved in this thesis by simulating agents with a smaller agent diameter

size l than reported in the literature in order to obtain the maximum densities observed

in the experiment.

Finally, it should be thought about an avoiding algorithm next to the repulsion rate

a. In detail, two main differentiations need to be made for avoiding: avoiding due to

a temporal and spatial relevant collision or desired avoidance for other reasons than

collision.

4.4.4 Further analogies to experiments

Concerning the fitted curves, exponential functions do not actually represent satisfacto-

rily what is happening. The high motivation increase is fast and then nearly constant

in the simulation and in the experiment for a specific number of participants, more

equivalent to a linear jump at the beginning. For low motivation, the change in density

is more gradual. Taking this and the other results into account, one could conclude that

the narrower corridors bring up a boundary effect. This is more pronounced for lower
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motivations, therefore reaching until 3.4 m. In the high motivation case, the boundary

effect disappears earlier. Ultimately this seems to be related to the time scale of the

contraction, which is different between both motivations and can also be observed in

the simulation.

Concerning the runaway values in the experiment, the simulation results offer some

interpretation too. The variation of number of agents N in the simulation showed

that small populations are not able to equally build up states. This could be an

explanation for not seeing density increases for several runs in the experiment [3] even

with high motivation. These runs lack a severe density build-up because the number of

participants is not sufficient but substantially necessary. On the other hand, a critical

number of agents N in wide corridors could possibly result in high densities as reached

with high motivation in the experiment as this state can be easily reached without

much moving up (”pushing analogy”) as shown by simulations. This would explain the

experimental data showing high densities in front of the bottleneck with low motivation.

It should be noted that the parameters a and D are actually provoking a shaking

of the agents’ movement to reach high densities, which could possibly be modelled

by using a randomly introduced noise. Interestingly, calibration parameters behave

differently depending on the corridor width, the transfer happening between 1.2 m and

2.3 m. The simulation and experiment observed a transfer from queuing to crowding

between 1.2 m and 2.3 m as well. Further analyses should investigate if a link can be

identified.

For all these findings, it should finally be kept in mind that simplified approaches were

used to study these specific pedestrian dynamics. In order to ameliorate and further

study the high-density states depicted in this thesis by simulation, it is suggested

that further implementations for the used velocity-based model are made and the

implementation of some model behaviour reconsidered.
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Conclusion

5.1 Summary

Guaranteeing safety in entrance scenarios is indispensable. Therefore, understanding

the arising phenomena in front of bottlenecks is essential. The aim of this thesis was the

use of modelling and simulation in order to better understand the differing experimental

observations when varying corridor width and motivation of participants in front of

bottlenecks. This meant setting up a simulation environment that is able to generate

data from a certain modelled behaviour and compare it to the experimental data. As

this process should be kept out as easy as possible, an existing velocity-based model

was used and its parameters altered to reproduce certain pedestrian dynamics. This

included many parameter variations and about a thousand simulations.

In general, the simulations for low motivation deliver interesting insights into the

formation of stable lanes and clustering when varying corridor width. The difference

between increasing corridor widths relies in progressively different desired directions of

agents, which will raise divergence and engender concurring behaviour. Probability of

interaction thus rises and negotiation issues result. Furthermore, the narrow corridor

does not support overtaking and filling interspace so that it optimizes an unproblematic

flow and a higher velocity, whereas in a wide corridor collisions and overtaking are pre-

programmed. This is further supported by the simulation results showing no clogging

in the narrow corridor, but in all other corridor widths. Specifically, the successive

development of the desired direction’s x-component with increasing corridor width will

produce variability and evolve from a queuing into a crowding situation. The transfer

from a nearly 1-dimensional narrow corridor scenario to a 2-dimensional wide corridor

scenario due to a different arrangement of the side walls will be accompanied by a density

increase in front of the bottleneck. With increasing width, more agents simultaneously
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access the same area in front of the bottleneck. The exact trend of this increase is

however unclear as an unintentional model behaviour blurs these findings. Thus, further

investigation is needed. However, a major density increase seems to happen between

corridor widths of 1.2 m and 2.3 m. Moreover, the calibration parameters of the

model also behave differently depending on the corridor width, the behaviour of these

parameters changing between 1.2 m and 2.3 m corridor width.

The unintentional model behaviour mentioned above is however useful in modelling

high motivation situations and utilized accordingly. The simulation results with an

increased agent motivation through adapted calibration and agent parameters show a

fast contracting stage during which the ordered structures such as stable lanes seen in

narrow corridors dissolve. For wider corridors, the change is subtle as this unordered

stage is much easier to reach and most of the time already accomplished during low

motivation. Nevertheless, lower densities in front of the bottleneck will be observed

for the narrow corridor due to the occurrence of geometric boundary effects as shown

by preliminary analyses. On the one hand, a boundary effect occurs at walls for the

narrow corridor and thus influences the maximum density possible. On the other hand,

a reduced number of near neighbours for the narrow corridor is observed implying an

overall reduced influence from other agents. Furthermore, the dimensionality difference

allows for the contraction of the agents to take place in only one dimension in the

narrow corridor, whereas it is a two-component contraction in the wide corridor. As a

contracted stage is always reached with high motivation, there will only be an initial

reduced density in front of the bottleneck for the narrow corridor.

Furthermore, the two-agent-types approach shows that a high-density stage in the

narrow corridor is sometimes harder to reach with differing agent behaviour. In the

simulation, this was shown through the possibility of overtaking: interspace occurs in

the narrow corridor with two types of agents when no overtaking is possible and thus

the ratio of highly motivated agents is insufficient for density-build. This never occurs

in the wide corridor which always satisfies overtaking. The interspace in the narrow

corridor is observed in the experiment as well.

Comparing both the low and high motivation simulations, the time gap parameter

T modifying the time scale of contraction, plays a major role in changing the simulation

outcome, which is the essential difference in the experiment too. The high motivation

density increase is fast and then nearly constant in the simulation and in the experiment

for a specific number of participants, equivalent to a linear jump at the beginning. For

low motivation, the increase in density is more gradual.

Finally, runaway values observed in the experiment can be explained by some

simulation results. The variation of number of agents N in the simulation showed that
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small populations are not able to build up equal states due to arrangement. This could

be an explanation for not seeing density increases for several runs in the experiment

even with high motivation. On the other hand, simulation shows that a critical number

of agents N in wide corridors can result in high densities as reached with high motivation

in the experiment as this state can be easily reached without much moving up (”pushing”

analogy).

5.2 Closing remarks and outlook

The results show that the current modelling approach is able to reproduce observed

behaviour in experimental setups. A good accordance is reached and profound explana-

tions given for why the data emerges as it does. However, extensions to the original

model like pushing, desired gap and an avoiding algorithm are necessary in order to

better describe the resulting dynamics and conduct further analysis such as varying

population sizes and impact of initial conditions like initial density in the corridor.

Velocity-based models thus primarily need extensions in order to better represent

queuing and crowding phenomena in front of bottlenecks. Meanwhile, other models

could certainly be applied to reconstruct the experimental data, among others this

would include force-based models like the social force model. One should however

consider the loss of advantages from velocity-based models.

66



Bibliography

[1] Armin Seyfried, Oliver Passon, Bernhard Steffen, Maik Boltes, Tobias Rupprecht,

and Wolfram Klingsch. New insights into pedestrian flow through bottlenecks.

Transportation Science, 43(3):395–406, 2009.

[2] Anna Sieben, Jette Schumann, and Armin Seyfried. Collective phenomena in

crowds—where pedestrian dynamics need social psychology. PLOS ONE, 12(6):1–

19, 06 2017.

[3] Juliane Adrian, Maik Boltes, Stefan Holl, Anna Sieben, and Armin Seyfried.

Crowding and queuing in entrance scenarios: Influence of corridor width in front

of bottlenecks. arXiv preprint arXiv:1810.07424, 2018.

[4] Christoph Ament. Modellbildung, Identifikation und Simulation dynamischer

Systeme. 2017.

[5] Mohcine Chraibi, Antoine Tordeux, Andreas Schadschneider, and Armin Seyfried.

Modelling of pedestrian and evacuation dynamics. Encyclopedia of Complexity and

Systems Science, pages 1–22, 2018.

[6] Antoine Tordeux, Mohcine Chraibi, and Armin Seyfried. Collision-free speed model

for pedestrian dynamics. In Traffic and Granular Flow’15, pages 225–232. Springer,

2016.
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Appendix A

Initial configuration files

A.1 JPS geometry file

<?xml version=” 1 .0 ” encoding=”UTF−8” standalone=” yes ”?>

<geometry version =” 0 .8 ” capt ion=” second l i f e ” x m l n s : x s i=” h t t p : //www. w3 . org /2001/

XMLSchema−i n s t a n c e ” xsi :noNamespaceSchemaLocation=” h t t p : // xsd . jupedsim . org /

jps geometry . xsd ” un i t=”m”>

<rooms>

<room id=”0” capt ion=” h a l l ”>

<subroom id=”1” capt ion=”Room 1” c l a s s=”Not s p e c i f i e d ” A x=”0” B y=”0” C z=”0”>

<polygon>

< !−− l e f t b a r r i e r !−−>

<ver tex px=” −0.25” py=” −1.10”/>

<ver tex px=” −0.25” py=” −0.15”/>

<ver tex px=” −0.40” py=” 0 .00 ”/>

<ver tex px=” −0.6” py=” 0 .00 ”/>

< !−− hinten zu !−−>

<ver tex px=” −0.6” py=” 6 .70 ”/>

<ver tex px=” −2.6” py=” 6 .7 ”/>

<ver tex px=” −2.6” py=” 10 .7 ”/>

<ver tex px=” 2 .6 ” py=” 10 .7 ”/>

<ver tex px=” 2 .6 ” py=” 6 .7 ”/>

<ver tex px=” 0 .6 ” py=” 6 .70 ”/>

< !−− r i g h t b a r r i e r !−−>

<ver tex px=” 0 .6 ” py=” 0 .00 ”/>

<ver tex px=” 0 .40 ” py=” 0 .00 ”/>

<ver tex px=” 0 .25 ” py=” −0.15”/>

<ver tex px=” 0 .25 ” py=” −1.10”/>

</ polygon>

</subroom>

</room>

</rooms>

<t r a n s i t i o n s>

<t r a n s i t i o n id=”0” capt ion=”NaN” type=”NaN” room1 id=”0” subroom1 id=”1”

room2 id=”−1” subroom2 id=”−1”>

<ver tex px=” −0.25” py=” −1.1”/>

<ver tex px=” 0 .25 ” py=” −1.1”/>

</ t r a n s i t i o n>
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</ t r a n s i t i o n s>

</ geometry>

A.2 JPScore file

<?xml version=” 1 .0 ” encoding=”UTF−8” ?>

<JuPedSim p r o j e c t=” s c e n a r i o b e n ” version=” 0 .8 ”

x m l n s : x s i=” h t t p : //www. w3 . org /2001/XMLSchema−i n s t a n c e ”

xsi :noNamespaceSchemaLocation=” . . / . . / xsd/ j p s i n i c o r e . xsd ”>

< !−− header : seed , geometry , output format −−>

<seed>1</ seed>

<max sim time>200</ max sim time>

< !−−maxCPU>1</maxCPU−−>

<geometry>0 geo .xml</ geometry>

< !−− t r a j e c t o r i e s f i l e and format −−>

< t r a j e c t o r i e s format=”xml−p l a i n ” f p s=”25”>

< f i l e l o c a t i o n=”2 t r a j . xml” />

</ t r a j e c t o r i e s>

<s h o w s t a t i s t i c s>t rue</ s h o w s t a t i s t i c s>

< l o g f i l e> l o g</ l o g f i l e>

< !−− agents −−>

<agents o p e r a t i o n a l m o d e l i d=”3”>

<a g e n t s d i s t r i b u t i o n>

<group group id=”1” agent paramete r id=”1” room id=”0” subroom id=”1”

number=”3” r o u t e r i d=”1” pre movement mean=”0” pre movement sigma=”0”

y min=” 0 .0 ” y max=” 1 .0 ”/>

<group group id=”2” agent paramete r id=”1” room id=”0” subroom id=”1”

number=”3” r o u t e r i d=”1” pre movement mean=”0” pre movement sigma=”0”

y min=” 1 .0 ” y max=” 2 .0 ”/>

<group group id=”3” agent paramete r id=”1” room id=”0” subroom id=”1”

number=”3” r o u t e r i d=”1” pre movement mean=”0” pre movement sigma=”0”

y min=” 2 .0 ” y max=” 3 .0 ”/>

<group group id=”4” agent paramete r id=”1” room id=”0” subroom id=”1”

number=”3” r o u t e r i d=”1” pre movement mean=”0” pre movement sigma=”0”

y min=” 3 .0 ” y max=” 4 .0 ”/>

<group group id=”5” agent paramete r id=”1” room id=”0” subroom id=”1”

number=”3” r o u t e r i d=”1” pre movement mean=”0” pre movement sigma=”0”

y min=” 4 .0 ” y max=” 5 .0 ”/>

<group group id=”6” agent paramete r id=”1” room id=”0” subroom id=”1”

number=”3” r o u t e r i d=”1” pre movement mean=”0” pre movement sigma=”0”

y min=” 5 .0 ” y max=” 6 .0 ”/>

<group group id=”7” agent paramete r id=”1” room id=”0” subroom id=”1”

number=”2” r o u t e r i d=”1” pre movement mean=”0” pre movement sigma=”0”

y min=” 6 .0 ” y max=” 6 .7 ”/>

<group group id=”8” agent paramete r id=”1” room id=”0” subroom id=”1”

number=”30” r o u t e r i d=”1” pre movement mean=”0” pre movement sigma=”0”

x min=” −1.5” x max=” 1 .5 ” y min=” 6 .7 ” y max=” 9 .0 ”/>
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</ a g e n t s d i s t r i b u t i o n>

</ agents>

< !−− o p e r a t i o n a l models −−>

<o p e r a t i o n a l m o d e l s>

<model o p e r a t i o n a l m o d e l i d=”3” d e s c r i p t i o n=” Tordeux2015 ”>

<model parameters>

<s o l v e r>e u l e r</ s o l v e r>

<s t e p s i z e>0.1</ s t e p s i z e>

<p e r i o d i c>0</ p e r i o d i c>

<e x i t c r o s s i n g s t r a t e g y>3</ e x i t c r o s s i n g s t r a t e g y>

< l i n k e d c e l l s enabled=” true ” c e l l s i z e=”30”/>

<f o r c e p e d a=”5” D=” 0 .1 ”/>

< f o r c e w a l l a=”5” D=” 0 .02 ”/>

</ model parameters>

<agent parameters agent paramete r id=”1”>

<v0 mu=” 1 .34 ” sigma=” 0 .0 ” />

<bmax mu=” 0.175 ” sigma=” 0 .0 ” /> < !−− t h i s i s l /2 , assuming peds are

c i r c l e s with constant rad ius−−>

<bmin mu=” 0.175 ” sigma=” 0 .0 ” />

<amin mu=” 0.175 ” sigma=” 0 .0 ” />

<tau mu=” 0 .5 ” sigma=” 0 .0 ” />

<atau mu=” 0 . ” sigma=” 0 .0 ” />

<T mu=”1” sigma=” 0 .0 ” />

</ agent parameters>

</model>

</ o p e r a t i o n a l m o d e l s>

< !−− route cho ice models −−>

<r o u t e c h o i c e m o d e l s>

<r o u t e r r o u t e r i d=”1” d e s c r i p t i o n=” f f g l o b a l s h o r t e s t ” />

</ r o u t e c h o i c e m o d e l s>

</JuPedSim>

A.3 JPSreport file

<?xml version=” 1 .0 ” encoding=”UTF−8” ?>

<JPSreport p r o j e c t=”JPS−Pro j e c t ” version=” 0 .8 ” x m l n s : x s i=” h t t p : //www. w3 . org /2001/

XMLSchema−i n s t a n c e ” xsi :noNamespaceSchemaLocation=” h t t p : // xsd . jupedsim . org /0 .6/

j p s r e p o r t . xsd ”>

< !−− geometry f i l e −−>

<geometry f i l e = ”0 geo . xml” />

< !−− t r a j e c t o r i e s f i l e and format −−>

< !−− e i t h e r a f i l e name or a path l o c a t i o n . In the l a t t e r case a l l f i l e s in the

d i r e c t o r y w i l l be used−−>

< t r a j e c t o r i e s format=”xml” un i t=”m”>

< f i l e name=”2 t r a j . xml” />

<path l o c a t i o n=” . / ” />

</ t r a j e c t o r i e s>
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< !−− g i v e r e l a t i v e path based on the l o c a t i o n i n i f i l e or g i v e the a b s o l u t e path−
−−>

<s c r i p t s l o c a t i o n=”/ Users / benhein /Workspace/ j p s r e p o r t / s c r i p t s ”/>

<measurement areas un i t=”m”>

<area B id=”1” type=”BoundingBox” zPos=”None”>

<ver tex x=” −0.4” y=” 0 .5 ” /> < !−− Clockwise −−>

<ver tex x=” −0.4” y=” 1 .3 ” />

<ver tex x=” 0 .4 ” y=” 1 .3 ” />

<ver tex x=” 0 .4 ” y=” 0 .5 ” />

<l eng th in mo vem ent d i r e c t i o n d i s t a n c e=” 2 .0 ” />

</ area B>

<area L id=”2” type=” Line ” zPos=”None”>

<s t a r t x=” −0.25” y=”0” />

<end x=” 0 .25 ” y=”0” />

</ area L>

</ measurement areas>

<v e l o c i t y>

<use x component>t rue</ use x component>

<use y component>t rue</ use y component>

< !−− The time i n t e r v a l t h a t used to c a l c u l a t e ins tantaneous v e l o c i t y

o f ped i [ f r ] here v i = (X( t+frame s tep /2) − X( t+frame step /2) ) /

f rame s tep . X i s l o c a t i o n . −−>

<f rame step>10</ f rame step>

</ v e l o c i t y>

<v e l o c i t y f rame step=”10” se t movement d i r ec t ion=”None” ignore backward movement=”

f a l s e ”/>

< !−− f rame s tep i s the time i n t e r v a l t h a t used to c a l c u l a t e ins tantaneous v e l o c i t y

o f ped i [ f r ] here v i = (X( t+frame s tep /2) − X( t+frame step /2) ) / f rame s tep . X i s

l o c a t i o n . −−>

< !−− Method A ( Zhang2011a ) Flow and Vel −−>

<method A enabled=” true ”>

< !−− Time i n t e r v a l used to count the f l ow [ f r ] −−>

<measurement area id=”2” f r a m e i n t e r v a l=” 100 ” p l o t t i m e s e r i e s=” true ”/>

</method A>

< !−− Method B ( Zhang2011a ) Vel and Dens based on Tin and Tout −−>

<method B enabled=” f a l s e ”>

<measurement area id=”2” />

</method B>

< !−− Method C ( Zhang2011a ) C l a s s i c a l d e n s i t y and Vel −−>

<method C enabled=” f a l s e ”>

<measurement area id=”2” p l o t t i m e s e r i e s=” true ”/>

</method C>

< !−− Method D ( Zhang2011a ) Voronoi d e n s i t y and Vel −−>

<method D enabled=” true ”>

<measurement area id=”1” s t a r t f r a m e=”None” stop f rame=”None”

g e t i n d i v id u a l FD=” f a l s e ” p l o t t i m e s e r i e s=” true ”/>

<one d imens iona l enabled=” f a l s e ”/>
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<c u t b y c i r c l e enabled=” true ” r a d i u s=” 1 .0 ” edges=”10”/>

<o u t p u t v o r o n o i c e l l s enabled=” f a l s e ” p l o t g r a p h s=” f a l s e ”/>

<p r o f i l e s enabled=” f a l s e ” g r i d s i z e x=” 0 .20 ” g r i d s i z e y=” 0 .20 ”/>

</method D>

</ JPSreport>
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Code fragments for two groups

. . .

int a g e n t i d = ped−>GetID ( ) ;

i f ( a g e n t i d%2 == 0) {
ped−>S e t S p o t l i g h t ( true ) ;

T = 0 . 2 5 ; // high mot .

}
else {

T = 1 . 0 ; // low mot .

}
double speed = ( spacing−l ) /T;

. . .

. . .

double a = 0 ;

int a g e n t i d = ped1−>GetID ( ) ;

i f ( a g e n t i d%2 == 0) {
ped1−>S e t S p o t l i g h t ( true ) ;

a = 2 . 5 ; // high mot .

}
else {

a = 5 . 0 ; // low mot .

}
double D = 0 . 0 5 ;

R i j = − a ∗ exp ( ( l−Distance ) /D) ;

. . .
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Appendix C

Parameter variations per width

code N a D T l v0 setup s.p.w.
101 50 5.0 0.10 1.0 0.30 1.34 default 10
102 50 5.0 0.10 1.0 0.35 1.20 standard 10
110 25 5.0 0.10 1.0 0.35 1.20 standard 10
120 75 5.0 0.10 1.0 0.35 1.20 standard 10
130 2-9 5.0 0.10 1.0 0.35 1.20 test scenario /

Table C.1: used parameters for default, standard and test scenario runs

code N a D T l v0 setup s.p.w.
140 50 1.5 0.09 1.0 0.35 1.20 aD var 5
141 50 2.5 0.03 1.0 0.35 1.20 aD var 5
142 50 3.5 0.15 1.0 0.35 1.20 aD var 5
143 50 4.5 0.11 1.0 0.35 1.20 aD var 5
144 50 5.5 0.01 1.0 0.35 1.20 aD var 5
145 50 6.5 0.13 1.0 0.35 1.20 aD var 5
146 50 7.5 0.07 1.0 0.35 1.20 aD var 5
147 50 8.5 0.17 1.0 0.35 1.20 aD var 5
148 50 9.5 0.05 1.0 0.35 1.20 aD var 5

Table C.2: used parameters for a and D variation runs
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code N a D T l v0 setup s.p.w.
150 50 5.0 0.10 1.0 0.35 1.20 T var 5
151 50 5.0 0.10 0.75 0.35 1.20 T var 5
152 50 5.0 0.10 0.50 0.35 1.20 T var 5
153 50 5.0 0.10 0.25 0.35 1.20 T var 5
154 50 5.0 0.05 0.10 0.35 1.20 T var 5
155 50 1.5 0.05 0.25 0.35 1.20 T var 5
156 50 1.5 0.05 0.10 0.35 1.20 T var 5
157 50 1.5 0.05 0.05 0.35 1.20 T var 5
158 50 10.0 0.05 0.10 0.35 1.20 T var 5

Table C.3: used parameters for T variation runs

code N a D T l v0 setup s.p.w.
160 50 1.5/5.0 0.05 0.10/0.5 0.35 1.20 2 groups 5
161 50 1.5/5.0 0.05 0.10/1.0 0.35 1.20 2 groups 5
162 50 1.5/5.0 0.05 0.20/1.0 0.35 1.20 2 groups 5
163 50 1.5/5.0 0.05 0.25/1.0 0.35 1.20 2 groups 5
164 50 2.5/5.0 0.05 0.10/1.0 0.35 1.20 2 groups 5
165 50 2.5/5.0 0.05 0.20/1.0 0.35 1.20 2 groups 5
166 50 2.5/5.0 0.05 0.25/1.0 0.35 1.20 2 groups 5

Table C.4: used parameters for 2 types of agents runs
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Supplementary material

D.1 Initial density calculation for N=25 and N=75

width (m) 1.2 2.3 3.4 4.5 5.6
Ncor 20 25 25 25 25
Nout 5 0 0 0 0
lred / 4.3 3.0 2.2 1.8

Table D.1: Calculated values Ncor, Nout and lred for 25 agents

width (m) 1.2 2.3 3.4 4.5 5.6
Ncor 20 39 57 75 75
Nout 55 36 18 0 0
lred / / / / 5.4

Table D.2: Calculated values Ncor, Nout and lred for 75 agents
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D.2. DESIRED DIRECTION USING FLOORFIELD

D.2 Desired direction using floorfield

(a) (b)

Figure D.1: emerging desired directions e0 using global shortest router with floorfield,
which is due to the intermediate target calculation
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D.3 Square vs. hexagonal Voronoi density

Illustration of density difference between a square and hexagonal area in function of r.

A circle with radius r is considered. This fits in a square with a side length a = 2r or a

hexagon with a side length b = 2r√
3
, see figure D.2. The area of the square is thus given

by A = 4r2 and the area of the hexagon by B = 2
√

3r2, the respective density by the

inverse of these two resulting is an 1/r2 relation.

Figure D.2: Area taken by a circle in a square vs. area taken by circle in a hexagon

The difference of both densities is plotted in Figure D.3, showing that a radius in the

range of the size of a pedestrian/agent comes along with important density differences.

Figure D.3: Density difference between square and hexagon in function of r
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D.4. DESIRED VS. MOVING DIRECTION AND IMPACT ON SPACING

D.4 Desired vs. moving direction and impact on

spacing

(a)

(b)

Figure D.4: Plotting of spacing, desired direction (y-component) and moving direction
(y-component) for one representative agent in a narrow and wide corridor. The spacing
is clearly higher in a narrow corridor and ei in small corridors will only differ a little
from e0. In wide corridors, ei will be significantly different from e0.
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APPENDIX D. SUPPLEMENTARY MATERIAL

D.5 Test scenario analysis with 2 and 10 agents

(a) 2 agents (1 + 1 behind)

(b) 10 agents (1 + 9 behind)

Figure D.5: Analysing the distance for a case of 2 agents and 10 agents, the distance
behaviour with only e0 activated will be the same. However, the distance behaviour
with repulsion activated shows a major difference, the oscillations being high for 2
agents
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D.6. ILLUSTRATING SNAPSHOTS FOR ONE MOTIVATED CROWD

D.6 Illustrating snapshots for one motivated crowd

(a) default parameters, low motivation

(b) recalibrated parameters a and D and time gap parameter T → 0

Figure D.6: Plots illustrating the low and high density states reached in the simulation
to represent a comparable approach to different motivations
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APPENDIX D. SUPPLEMENTARY MATERIAL

D.7 Illustrating snapshots for 2 types of agents

(a) (b)

Figure D.7: Simulation snapshots showing overtaking (left) and no overtaking possi-
bility (right). By consequence, a lane of highly motivated agents will develop in the left
picture, whereas in the right picture they accumulate behind lowly motivated agents
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D.8. VORONOI CELLS FOR TWO TYPES OF AGENTS

D.8 Voronoi cells for two types of agents

(a) w = 1.2 m

(b) w = 4.5 m

Figure D.8: Voronoi plots for 2 types of agents indicating that higher densities are
simpler and faster to reach in a wide corridor
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Appendix E

Listing of bash and python scripts

The following python and bash scripts have been written to produce, analyse and plot

the data during this thesis:

master.sh

auto.sh

voronoi.py

smoothed_time_density.py

plot_dist_wait.py

data_filter.py

geo.py

configs.py

graphics.py

r_vs_density.py

max_neigbours.py

constant_densities.py

momentan.py

master_flow.py

T_trends.py

repulsion_functions.py

latin.py

several_seeds.py

change_seed.py

autoplots.py

time_densities_seeds.py

trajectories_plot.py

directions.py
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x_component.py

spacing_vs_repulsion.py

dist_wait_standard.py

specific_w_N.py

blockage.py

master_plot_aD.py

master_plot_T.py

They can be found in the digital appendix.
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